Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Impedance Spectra and Direct Current (DC) Conductivity
3.2. Scaling Features of the Conductivity Spectra
3.3. Scaling Features of the Permittivity Spectra
3.4. Relevant Length Scales to Electrical Transport
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brow, R.K. Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 2000, 263–264, 1–28. [Google Scholar] [CrossRef]
- Sayer, M.; Mansingh, A. Transport Properties of Semiconducting Phosphate Glasses. Phys. Rev. B 1972, 6, 4629–4643. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Song, X.; Wu, Y. Glass forming region, structure and properties of zinc iron phosphate glasses. J. Non-Cryst. Solids 2013, 379, 208–213. [Google Scholar] [CrossRef]
- Liu, L.; Xing, J.; Shang, F.; Chen, G. Structure and up-conversion luminescence of Yb3+/Ho3+ co-doped fluoroborate glasses. Opt. Commun. 2021, 490, 126944. [Google Scholar] [CrossRef]
- Mesko, M.G.; Day, D.E.; Bunker, B.C. Immobilization of CsCl and SrF2 in iron phosphate glass. Waste Manag. 2000, 20, 271–278. [Google Scholar] [CrossRef]
- Bih, H.; Bih, L.; Manoun, M.; Lazor, P. Preparation and electrical conductivity of NaF-Li2OWO3-P2O5 glasses. Optoelectron. Adv. Mater. Rapid Commun. 2009, 3, 959–963. [Google Scholar]
- Choudhary, B.P. Electrical and dielectric behavior of zinc phosphate glasses. Mater. Today Proc. 2017, 4, 5706–5714. [Google Scholar] [CrossRef]
- Bunker, B.C.; Arnold, G.W.; Wilder, J.A. Phosphate glass dissolution in aqueous solutions. J. Non-Cryst. Solids 1984, 64, 291–316. [Google Scholar] [CrossRef]
- Greaves, N.; Gurman, S.J.; Gladden, L.F.; Spence, C.A.; Cox, P.; Sales, B.C.; Boatner, L.A.; Jenkins, R.N. Structural Basis for the Corrosion Resistance of Lead-Iron-Phosphate Glasses: An X-ray Adsorption Spectroscopy Study. Philos. Mag. B 1988, 58, 271–283. [Google Scholar] [CrossRef]
- Yu, X.; Day, D.E.; Long, G.J.; Brow, R.K. Properties and Structure of Sodium-Iron Phosphate Glasses. J. Non-Cryst. Solids 1997, 215, 21–31. [Google Scholar] [CrossRef]
- Fang, X.; Ray, C.S.; Moguš-Milanković, A.; Day, D.E. Iron Redox Equilibrium, Structure and Properties of Iron Phosphate Glasses. J. Non-Cryst. Solids 2001, 283, 162–172. [Google Scholar] [CrossRef]
- Stoch, P.; Goj, P.; Ciecińska, M.; Jeleń, P.; Błachowski, A.; Stoch, A.; Krakowiak, I. Influence of aluminum on structural properties of iron-polyphosphate glasses. Ceram. Int. 2020, 46, 19146–19157. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Gajović, A.; Šantić, A.; Day, D.E. Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J. Non-Cryst. Solids 2001, 289, 204–213. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Day, D.E. Thermally Stimulated Polarization and dc Conduction in Iron Phosphate Glasses. J. Non-Cryst. Solids 1993, 162, 275–286. [Google Scholar] [CrossRef]
- Friebele, E.J.; Wilson, L.K.; Dozier, A.W.; Kinser, D.L. Antiferromagnetism in an Oxide Semiconducting Glass. Phys. Status Solidi B 1971, 45, 323–331. [Google Scholar] [CrossRef]
- Marasinghe, G.K.; Karabulut, M.; Ray, C.S.; Day, D.E.; Shumsky, M.G.; Yelon, W.B.; Booth, C.H.; Allen, P.G.; Shuh, D.K. Structural features of iron phosphate glasses. J. Non-Cryst. Solids 1997, 222, 144–152. [Google Scholar] [CrossRef]
- Ray, C.S.; Fang, X.; Karabulut, M.; Marasinghe, G.K.; Day, D.E. Effect of melting temperature and time on iron valence and crystallization of iron phosphate glasses. J. Non-Cryst. Solids 1999, 249, 1–16. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Rajić, M.; Drašner, A.; Trojko, R.; Day, D.E. Crystallisation of iron phosphate glasses. Phys. Chem. Glasses 1998, 39, 70–75. [Google Scholar]
- Moguš-Milanković, A.; Šantić, A.; Reis, S.T.; Furić, K.; Day, D.E. Studies of lead–iron phosphate glasses by Raman, Mössbauer and impedance spectroscopy. J. Non-Cryst. Solids 2005, 351, 3246–3258. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Sklepić, K.; Skoko, Ž.; Mikac, L.; Musić, S.; Day, D.E. Influence of nanocrystallization on the electronic conductivity of zinc iron phosphate glass. J. Am. Ceram. Soc. 2012, 95, 303–311. [Google Scholar] [CrossRef]
- Pavić, L.; Graca, M.P.; Skoko, Ž.; Moguš-Milanković, A.; Valente, M.A. Magnetic properties of iron phosphate glass and glass-ceramics. J. Am. Ceram. Soc. 2014, 97, 2517–2524. [Google Scholar] [CrossRef]
- Pavić, L.; Skoko, Ž.; Gajović, A.; Su, D.; Moguš-Milanković, A. Electrical transport in iron phosphate glass-ceramics. J. Non-Cryst. Solids 2018, 502, 44–53. [Google Scholar] [CrossRef]
- Pavić, L.; Nikolić, J.; Graça, M.P.; Costa, B.F.; Valente, M.A.; Skoko, Ž.; Šantić, A.; Moguš-Milanković, A. Effect of controlled crystallization on polaronic transport in phosphate-based glass-ceramics. Int. J. Appl. Glass Sci. 2020, 11, 97–111. [Google Scholar] [CrossRef]
- Pavić, L.; Sklepić, K.; Skoko, Z.; Tricot, G.; Mošner, P.; Koudelka, L.; Moguš-Milanković, A. Ionic conductivity of lithium germanium phosphate glass-ceramics. J. Phys. Chem. C 2019, 123, 23312–23322. [Google Scholar] [CrossRef]
- Renka, S.; Klaser, T.; Burazer, S.; Mošner, P.; Kalenda, P.; Šantić, A.; Moguš-Milanković, A. High electronically conductive tungsten phosphate glass-ceramics. Nanoaterials 2020, 10, 2515. [Google Scholar] [CrossRef]
- Blanc, W.; Martin, I.; Francois-Saint-Cyr, H.; Bidault, X.; Chaussedent, S.; Hombourger, C.; Lacomme, S.; Le Coustumer, P.; Neuville, D.R.; Larson, D.J.; et al. Compositional changes at the early stages of nanoparticles growth in glasses. J. Phys. Chem. C 2019, 123, 29008–29014. [Google Scholar] [CrossRef]
- Ayers, J.D.; Harris, V.G.; Sprague, J.A.; Elam, W.T. On the role of Cu and Nb in the formation of nanocrystals in amorphous Fe73.5Nb3Cu1Si13.5B9. Appl. Phys. Lett. 1994, 64, 974–976. [Google Scholar] [CrossRef]
- Takeoka, S.; Fujii, M.; Hayashi, S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 2000, 62, 16820. [Google Scholar] [CrossRef]
- Hansen, K.W. Semiconduction in iron phosphate glasses. J. Electrochem. Soc. 1965, 112, 994–996. [Google Scholar] [CrossRef]
- Šantić, A.; Moguš-Milanković, A. Charge carrier dynamics in materials with disordered structures: A case study of iron phosphate glasses. Croat. Chem. Acta 2012, 85, 245–254. [Google Scholar] [CrossRef]
- Dutta, B.; Fahmy, N.A.; Pegg, I.L. Effect of mixing transition ions in glasses. II. The P2O5–Fe2O3–MnO system. J. Non-Cryst. Solids 2005, 351, 2552–2561. [Google Scholar] [CrossRef]
- Pavić, L.; Šantić, A.; Nikolić, J.; Mošner, P.; Koudelka, L.; Pajić, D.; Moguš-Milanković, A. Nature of mixed electrical transport in Ag2O–ZnO–P2O5 glasses containing WO3 and MoO3. Electrochim. Acta 2018, 276, 434–445. [Google Scholar] [CrossRef]
- Dutta, B.; Fahmy, N.A.; Pegg, I.L. Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system. J. Non-Cryst. Solids 2005, 351, 1958–1966. [Google Scholar] [CrossRef]
- Wang, F.; Liao, Q.; Dai, Y.; Zhu, H. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium (III). J. Nucl. Mater. 2016, 477, 50–58. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wang, Q.; Zhu, H.; Xiang, G.; Liao, Q.; Zhu, Y. Effect of neodymium on the glass formation, dissolution rate and crystallization kinetic of borophosphate glasses containing iron. J. Non-Cryst. Solids 2019, 526, 119726. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1968, 1, 1–17. [Google Scholar] [CrossRef]
- Austin, I.G.; Mott, N.F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 1969, 18, 41–102. [Google Scholar] [CrossRef]
- Murawski, L.; Chung, C.H.; Mackenzie, J.D. Electrical properties of semiconducting oxide glasses. J. Non-Cryst. Solids 1979, 32, 91–104. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Day, D.E.; Šantić, B. DC conductivity and polarisation in iron phosphate glasses. Phys. Chem. Glasses 1999, 40, 69–74. [Google Scholar]
- Moguš-Milanković, A.; Šantić, A.; Gajović, A.; Day, D.E. Electrical properties of sodium phosphate glasses containing Al2O3 and/or Fe2O3. J. Non-Cryst. Solids 2001, 296, 57–64. [Google Scholar] [CrossRef]
- Davis, L.L.; Darab, J.G.; Qian, M.; Zhao, D.; Palenik, C.S.; Li, H.; Strachan, D.M.; Li, L. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass and glass sub-components: A solubility study. J. Non-Cryst. Solids 2003, 328, 102–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Navrotsky, A.; Li, H.; Li, L.; Davis, L.L.; Strachan, D.S. Energetics of dissolution of Gd2O3 and HfO2 in sodium alumino-borosilicate glasses. J. Non-Cryst. Solids 2001, 296, 93–101. [Google Scholar] [CrossRef]
- Karabulut, M.; Yüksek, M.; Marasinghe, G.K.; Day, D.E. Structural features of hafnium iron phosphate glasses. J. Non-Cryst. Solids 2009, 355, 1571–1573. [Google Scholar] [CrossRef]
- Karabulut, M.; Aydın, C.; Ertap, H.; Yüksek, M. Structure and properties of hafnium iron borophosphate glass-ceramics. J. Non-Cryst. Solids 2015, 411, 19–25. [Google Scholar] [CrossRef]
- Karabulut, M.; Ertap, H.; Yüksek, M. IR and Mössbauer spectroscopic study of cerium iron borophosphate glasses. J. Non-Cryst. Solids 2015, 417, 39–44. [Google Scholar] [CrossRef]
- Karabulut, M.; Yuce, B.; Bozdogan, O.; Ertap, H.; Mammadov, G.M. Effect of boron addition on the structure and properties of iron phosphate glasses. J. Non-Cryst. Solids 2011, 357, 1455–1462. [Google Scholar] [CrossRef]
- Bingham, P.A.; Hand, R.J.; Forder, S.D. Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater. Res. Bull. 2006, 41, 1622–1630. [Google Scholar] [CrossRef]
- Bingham, P.A.; Hand, R.J.; Forder, S.D.; Lavaysierre, A.; Deloffre, F.; Kilcoyne, S.H.; Yasin, I. Structure and properties of iron borophosphate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2006, 47, 313–317. [Google Scholar]
- Tkebe, H.; Harada, T.; Kuwabara, M. Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. J. Non-Cryst. Solids 2006, 352, 709–713. [Google Scholar] [CrossRef]
- Donald, I.W.; Metcalfe, B.L.; Fong, S.K.; Gerrard, L.A. The influence of Fe2O3 and B2O3 additions on the thermal properties, crystallization kinetics and durability of a sodium aluminum phosphate glass. J. Non-Cryst. Solids 2006, 352, 2993–3001. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Pavić, L.; Ertap, H.; Karabulut, M. Polaronic mobility in boron doped iron phosphate glasses: Influence of structural disorder on summerfield scaling. J. Am. Ceram. Soc. 2012, 95, 2007–2014. [Google Scholar] [CrossRef]
- Pavić, L.; Fazinić, S.; Ertap, H.; Karabulut, M.; Moguš-Milanković, A.; Šantić, A. Polaronic conductivity in iron phosphate glasses containing B2O3. Materials 2020, 13, 2505. [Google Scholar] [CrossRef]
- Šantić, A.; Banhatti, R.D.; Pavić, L.; Ertap, H.; Yüksek, M.; Karabulut, M.; Moguš-Milanković, A. Polaronic transport in iron phosphate glasses containing HfO2 and CeO2. Phys. Chem. Chem. Phys. 2017, 19, 3999–4009. [Google Scholar] [CrossRef] [Green Version]
- Žic, M. An alternative approach to solve complex nonlinear least-squares problems. J. Electroanal. Chem. 2016, 760, 85–96. [Google Scholar] [CrossRef]
- Macdonald, J.R. (Ed.) IMPEDANCE Spectroscopy-Emphasizing Solid Materials and Systems; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Šantić, A.; Kim, C.W.; Day, D.E.; Moguš-Milanković, A. Electrical properties of Cr2O3–Fe2O3–P2O5 glasses. Part II. J. Non-Cryst. Solids 2010, 356, 2699–2703. [Google Scholar] [CrossRef]
- Austin, I.G. Polaron conduction in disordered 3d oxides. J. Non-Cryst. Solids 1970, 2, 474–483. [Google Scholar] [CrossRef]
- Banday, A.; Murugavel, S. Small polaron hopping conduction mechanism in LiFePO4 glass and crystal. J. Appl. Phys. 2017, 121, 045111. [Google Scholar] [CrossRef]
- Pavić, L.; Krivačić, S.; Moguš-Milanković, A.; Šantić, A. Low potassium mobility in iron pyrophosphate glasses. J. Non-Cryst. Solids 2020, 535, 119969. [Google Scholar] [CrossRef]
- Moguš-Milanković, A.; Šantić, A.; Ličina, V.; Day, D.E. Dielectric Behavior and Impedance Spectroscopy of Bismuth Iron Phosphate Glasses. J. Non-Cryst. Solids 2005, 351, 3235–3245. [Google Scholar] [CrossRef]
- Al-Hajry, A.; Tashtoush, N.; El-Desoky, M.M. Characterization and transport properties of semiconducting Fe2O3–Bi2O3–Na2B4O7 glasses. Phys. B Condens. Matter 2005, 368, 51–57. [Google Scholar] [CrossRef]
- El-Desoky, M.; Kashif, I. Electrical conductivity in mixed calcium and barium iron phosphate glasses. Phys. Status Solidi A 2002, 194, 89–105. [Google Scholar] [CrossRef]
- Murawski, L.; Growski, O. Some Aspects of DC Conductivity in Iron Phosphate Glasses. Acta Phys. Pol. 1976, 50, 463–471. [Google Scholar]
- Šantić, A. Strukturna i Električna Svojstva Željeznih Fosfatnih Stakala Dopiranih Metalnim Oksidima. Ph.D. Thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, 21 December 2005. [Google Scholar]
- Moguš-Milanković, A.; Šantić, A.; Karabulut, M.; Day, D.E. Study of electrical properties of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses by impedance spectroscopy II. J. Non-Cryst. Solids 2003, 330, 128–141. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999, 32, R57. [Google Scholar] [CrossRef]
- Summerfield, S.; Butcher, P.N. Universal behaviour of AC hopping conductivity in disordered systems. J. Non-Cryst. Solids 1985, 77, 135–138. [Google Scholar] [CrossRef]
- Summerfield, S. Universal low-frequency behaviour in the ac hopping conductivity of disordered systems. Philos. Mag. B 1985, 52, 9–22. [Google Scholar] [CrossRef]
- Šantić, A.; Nikolić, J.; Pavić, L.; Banhatti, R.D.; Mosner, P.; Koudelka, L.; Moguš-Milanković, A. Scaling features of conductivity spectra reveal complexities in ionic, polaronic and mixed ionic-polaronic conduction in phosphate glasses. Acta Mater. 2019, 175, 46–54. [Google Scholar] [CrossRef]
- Sklepić, K.; Banhatti, R.D.; Tricot, G.; Mosner, P.; Koudelka, L.; Moguš-Milanković, A. Insights from local network structures and localized diffusion on the ease of lithium ion transport in two mixed glass-former systems. J. Phys. Chem. C 2017, 121, 17641–17657. [Google Scholar] [CrossRef] [Green Version]
- Roling, B.; Happe, A.; Funke, K.; Ingram, M.D. Carrier concentrations and relaxation spectroscopy: New information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 1997, 78, 2160–2163. [Google Scholar] [CrossRef]
- Roling, B. Scaling properties of the conductivity spectra of glasses and supercooled melts. Solid State Ion. 1998, 105, 185–193. [Google Scholar] [CrossRef]
- Zielniok, D. Correlation between Structure and Ion Dynamics in Inorganic Glasses with Mixed Anionic Framework Studied by NMR and Conductivity Spectroscopy. Ph.D. Thesis, University of Munster, Munster, Germany, 2006. [Google Scholar]
- Sidebottom, D.L. Universal approach for scaling the ac conductivity in ionic glasses. Phys. Rev. Lett. 1999, 82, 3653–3656. [Google Scholar] [CrossRef]
- Sidebottom, D.L.; Roling, B.; Funke, K. Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties. Phys. Rev. B 2000, 63, 024301. [Google Scholar] [CrossRef]
- Bottcher, C.J.F.; Bordewijk, P. Theory of Electrical Polarization; Elsvier: Amsterdam, The Netherlands, 1978; Volume 2. [Google Scholar]
- Sidebottom, D.L.; Zhang, J. Scaling of the a.c. Permittivity in Ion Conducting Glasses. Phys. Rev. B 2000, 62, 5503–5507. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Colloquium: Understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev. Mod. Phys. 2009, 81, 999–1014. [Google Scholar] [CrossRef]
- Schrøder, T.B.; Dyre, J.C. Scaling and Universality of ac Conduction in Disordered Solids. Phys. Rev. Lett. 2000, 84, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Bogomolov, V.N.; Mirlin, D.N. Optical absorption by polarons in rutile (TiO2) single crystals. Phys. Status Solidi B 1968, 27, 443–453. [Google Scholar] [CrossRef]
- Banhatti, R.D.; Cramer, C.; Zielniok, D.; Robertson, A.J.; Ingram, M.D. Insights into Ion-Network Interactions and Ion Transport in Glass. Z. Phys. Chem. 2009, 223, 1201–1215. [Google Scholar] [CrossRef]
Sample | Batch Composition (mol%) a | Molar O/P Ratio | Molar Fe/P Ratio | N (Fe Ions) ×10−21/cm−3 | R = N−1/3/Å | |||
---|---|---|---|---|---|---|---|---|
B2O3 | HfO2 | P2O5 | Fe2O3 | |||||
G–B0Hf0 | - | - | 60 | 40 | 3.5 | 0.67 | 9.63 b | 4.70 b |
Series F | ||||||||
F–B2Hf2 | 2 | 2 | 60 | 36 | 3.48 | 0.60 | 8.89 b | 4.83 b |
F–B4Hf4 | 4 | 4 | 60 | 32 | 3.47 | 0.53 | 8.00 | 5.00 |
F–B4Hf6 | 4 | 6 | 60 | 30 | 3.45 | 0.50 | 7.52 | 5.10 |
F–B8Hf8 | 8 | 8 | 60 | 24 | 3.43 | 0.40 | 6.16 | 5.46 |
Series S | ||||||||
S–B2Hf2 | 2 | 2 | 57.6 | 38.4 | 3.59 | 0.67 | 9.16 | 4.70 |
S–B4Hf4 | 4 | 4 | 55.2 | 36.2 | 3.68 | 0.67 | 9.26 | 4.76 |
S–B6Hf6 | 6 | 6 | 52.8 | 35.2 | 3.78 | 0.67 | 8.88 | 4.83 |
S–B4Hf8 | 4 | 8 | 52.8 | 35.2 | 3.76 | 0.67 | 11.64 | 4.41 |
Samples | σDCa/(Ω cm)−1 ± 0.5% | EDC/kJ mol−1 ± 0.5% | σ0*/(Ω cm)−1 K ± 0.5% | Cb | exp(−2αR) | α/Å−1 |
---|---|---|---|---|---|---|
G–B0Hf0 | 1.00 × 10−10 | 62.4 | 3.14 | 0.23 c | 0.020 | 0.42 |
F–B2Hf2 | 8.71 × 10−11 | 62.2 | 3.08 | 0.58 c,d | 0.013 | 0.45 |
F–B4Hf4 | 5.01 × 10−11 | 62.9 | 2.96 | 0.17 | 0.017 | 0.40 |
F–B4Hf6 | 4.07 × 10−11 | 63.3 | 2.91 | 0.18 | 0.015 | 0.41 |
F–B8Hf8 | 1.12 × 10−10 | 60.0 | 2.77 | 0.36 | 0.008 | 0.45 |
S–B2Hf2 | 7.94 × 10−10 | 58.3 | 3.35 | 0.32 d | 0.027 | 0.38 |
S–B4Hf4 | 1.41 × 10−10 | 61.9 | 3.18 | 0.16 c | 0.029 | 0.37 |
S–B6Hf6 | 1.32 × 10−9 | 57.0 | 3.37 | 0.39 | 0.026 | 0.38 |
S–B4Hf8 | 1.35 × 10−9 | 56.9 | 3.33 | 0.38 | 0.006 | 0.58 |
Samples | Nv (Polarons) × 10−21/cm−3 | rp/Å | log (fshift) | (Δε T) /K | <rLOC2(∞)>1/2/Å |
---|---|---|---|---|---|
F40 | 2.22 a | 1.89 a | 0 | 3910 | 2.25 |
F–B2Hf2 a | 3.73 a | 1.94 a | +0.06 | 4564 | 1.93 |
F–B4Hf4 | 1.36 | 2.02 | +0.01 | 4286 | 3.00 |
F–B4Hf6 | 1.35 | 2.06 | −0.03 | 4103 | 2.94 |
F–B8Hf8 | 2.22 | 2.20 | +0.03 | 4177 | 2.97 |
S–B2Hf2 | 3.08 | 1.90 | +0.12 | 4994 | 2.15 |
S–B4Hf4 | 1.48 | 1.92 | +0.11 | 5437 | 3.24 |
S–B6Hf6 | 3.46 | 1.95 | +0.14 | 5742 | 2.18 |
S–B4Hf8 | 4.42 | 1.78 | +0.10 | 4679 | 1.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bafti, A.; Kubuki, S.; Ertap, H.; Yüksek, M.; Karabulut, M.; Moguš-Milanković, A.; Pavić, L. Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures. Nanomaterials 2022, 12, 639. https://doi.org/10.3390/nano12040639
Bafti A, Kubuki S, Ertap H, Yüksek M, Karabulut M, Moguš-Milanković A, Pavić L. Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures. Nanomaterials. 2022; 12(4):639. https://doi.org/10.3390/nano12040639
Chicago/Turabian StyleBafti, Arijeta, Shiro Kubuki, Hüseyin Ertap, Mustafa Yüksek, Mevlüt Karabulut, Andrea Moguš-Milanković, and Luka Pavić. 2022. "Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures" Nanomaterials 12, no. 4: 639. https://doi.org/10.3390/nano12040639
APA StyleBafti, A., Kubuki, S., Ertap, H., Yüksek, M., Karabulut, M., Moguš-Milanković, A., & Pavić, L. (2022). Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures. Nanomaterials, 12(4), 639. https://doi.org/10.3390/nano12040639