Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis Procedure
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.C.; Yu, L.; Liu, J.J.; Lu, J.; Bi, X.X.; Dai, A.; Li, M.; Li, M.F.; Hu, Z.X.; Ma, L.; et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 227–286. [Google Scholar] [CrossRef]
- Yu, Z.L.; Qu, X.Y.; Dou, A.C.; Zhou, Y.; Su, M.R.; Liu, Y.J. Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceram. Int. 2021, 47, 1758–1765. [Google Scholar] [CrossRef]
- Wang, X.X.; Ding, Y.L.; Deng, Y.P.; Chen, Z.W. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: Promises and challenges. Adv. Energy Mater. 2020, 10, 1903864. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, F.A.; Zhang, Y.X. Micron-sized monodisperse particle LiNi0.6Co0.2Mn0.2O2 derived by oxalate solvothermal process combined with calcination as cathode material for lithium-ion batteries. Materials 2021, 14, 2576. [Google Scholar] [CrossRef]
- Salgado, R.M.; Danzi, F.; Oliveira, J.E.; El-Azab, A.; Camanho, P.P.; Braga, M.H. The latest trends in electric vehicles batteries. Molecules 2021, 26, 3188. [Google Scholar] [CrossRef]
- Chu, B.B.; You, L.Z.; Li, G.X.; Huang, T.; Yu, A.S. Revealing the role of w-doping in enhancing the electrochemical performance of the LiNi0.6Co0.2Mn0.2O2 cathode at 4.5 V. ACS Appl. Mater. Interfaces 2021, 13, 7308–7316. [Google Scholar] [CrossRef]
- Goonetilleke, D.; Shaima, N.; Pang, W.K.; Peterson, V.K.; Petibon, R.; Li, J.; Dahn, J.R. Structural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodes. Chem. Mater. 2019, 31, 376–386. [Google Scholar] [CrossRef]
- Kim, U.H.; Ryu, H.H.; Kim, J.H.; Mücke, R.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles. Adv. Energy Mater. 2019, 9, 1803902. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, P.P.; Zeng, T.Y.; Yu, Z.L.; Qu, X.Y.; Peng, X.Q.; Zhou, Y.; Duan, X.G.; Dou, A.; Su, M.R.; et al. Improving the structure stability of LiNi0.8Co0.15Al0.05O2 by double modification of tantalum surface coating and doping. ACS Appl. Energy Mater. 2021, 4, 8641–8652. [Google Scholar] [CrossRef]
- Liu, S.W.; Li, Y.J.; Wang, S.L.; Chen, Y.X.; Tan, Z.L.; Yang, J.C.; Deng, S.Y.; He, Z.J.; Li, C.X. Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries via yttrium modification. J. Alloy. Compd. 2021, 874, 159713. [Google Scholar] [CrossRef]
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Song, C.H.; Wang, W.G.; Peng, H.L.; Wang, Y.; Zhao, C.L.; Zhang, H.B.; Tang, Q.W.; Lv, J.Z.; Du, X.J.; Dou, Y.M. Improving the electrochemical performance of LiNi0.80Co0.15Al0.05O2 in lithium-ion batteries by LiAlO2 surface modification. Appl. Sci. 2018, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.P.; Liu, Z.; Fu, X.J.; Liu, J.M.; Zeng, Q.G. Improving the cycling performance of LiNi0.80Co0.15Al0.05O2 cathode materials via zirconium and fluorine co-substitution. J. Alloy. Compd. 2019, 806, 136–145. [Google Scholar] [CrossRef]
- Park, K.J.; Choi, M.J.; Maglia, F.; Kim, S.J.; Kim, K.H.; Yoon, C.S.; Sun, Y.K. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1703612. [Google Scholar] [CrossRef]
- Qiu, Z.P.; Zhang, Y.L.; Liu, Z.; Gao, Y.; Liu, J.M.; Zeng, Q.G. Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation co-doping for high-energy lithium-ion batteries. ChemElectroChem 2020, 7, 3811–3817. [Google Scholar] [CrossRef]
- Nie, Y.; Xiao, W.; Miao, C.; Wang, J.L.; Tan, Y.; Xu, M.B.; Wang, C.J. Improving the structural stability of Ni-rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceram. Int. 2021, 47, 9717–9726. [Google Scholar] [CrossRef]
- Jamil, S.; Ran, Q.W.; Yang, L.; Huang, Y.; Gao, S.; Yang, X.K.; Wang, X.Y. Improved high-voltage performance of LiNi0.87Co0.1Al0.03O2 by Li+-conductor coating. Chem. Eng. J. 2021, 407, 126442. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yang, S.Y.; Huang, Y.Y.; Hou, X.H. Synthesis of non-spherical LiNi0.88Co0.09Al0.03O2 cathode material for lithium-ion batteries. Energy Fuels 2020, 34, 9002–9010. [Google Scholar] [CrossRef]
- Xiong, Y.K.; Gao, G.L.; Li, Y.J.; Zhu, J.; Zheng, J.C.; Tan, Z.L.; Xi, X.M.; Yang, J.C. The synergistic effect of Gd modification on improving the electrochemical performance of LiNi0.88Co0.09Al0.03O2 Cathode Materials. J. Electrochem. Soc. 2021, 168, 030510. [Google Scholar] [CrossRef]
- Yang, H.P.; Wu, H.H.; Ge, M.Y.; Li, L.J.; Yuan, Y.F.; Yao, Q.; Chen, J.; Xia, L.F.; Zheng, J.M.; Chen, Z.Y.; et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825. [Google Scholar] [CrossRef]
- Kim, U.H.; Park, G.T.; Son, B.K.; Nam, G.W.; Liu, J.; Kuo, L.Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869. [Google Scholar] [CrossRef]
- Liu, L.H.; Li, M.C.; Chu, L.H.; Jiang, B.; Lin, R.X.; Zhu, X.P.; Cao, G.Z. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci. 2020, 111, 100655. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, J.; Zaker, N.; Zhang, N.; Botton, G.A.; Dahn, J.R. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. J. Electrochem. Soc. 2019, 166, A1956–A1963. [Google Scholar] [CrossRef]
- Wu, F.; Liu, N.; Chen, L.; Su, Y.F.; Tan, G.Q.; Bao, L.Y.; Zhang, Q.Y.; Lu, Y.; Wang, J.; Chen, S.; et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 2019, 59, 50–57. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, K.J.; Yoon, C.S.; Sun, Y.K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Nam, G.W.; Park, N.Y.; Park, K.J.; Yang, J.H.; Liu, J.; Yoon, C.S.; Sun, Y.K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001. [Google Scholar] [CrossRef]
- Liu, Y.L.; Ouyang, D.X.; Rathore, D.; Wu, H.H.; Li, K.; Wang, Y.Q.; Sha, J.; Yin, S.; Dahn, J.R. An evaluation of a systematic series of cobalt-free Ni-rich core-shell materials as positive electrode materials for Li-ion batteries. J. Electrochem. Soc. 2021, 168, 090555. [Google Scholar] [CrossRef]
- Wu, K.; Jiao, J.Y.; Li, N.; Wang, M.; Jia, G.F.; Lee, Y.L.; Dang, R.B.; Deng, X.; Xiao, X.L.; Wu, Z.J. Revealing the multiple influences of Zr substitution on the structural and electrochemical behavior of high nickel LiNi0.8Co0.1Mn0.1O2 cathode material. J. Phys. Chem. C 2021, 125, 10260–10273. [Google Scholar] [CrossRef]
- Chang, B.; Kim, J.; Cho, Y.; Hwang, I.; Jung, M.S.; Char, K.; Li, K.T.; Kim, K.J.; Choi, J.W. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2001069. [Google Scholar] [CrossRef]
- Tian, R.Z.; Su, J.R.; Ma, Z.J.; Song, D.W.; Shi, X.X.; Zhang, H.Z.; Li, C.L.; Zhang, L.Q. Influences of surface Al concentration on the structure and electrochemical performance of core-shell LiNi0.8Co0.15Al0.05O2 cathode material. Electrochim. Acta 2020, 337, 135769. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.D.; Zhang, Q.; Cheng, F.Y.; Chen, J. Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology 2020, 53, 1–11. [Google Scholar] [CrossRef]
- Choi, C.M.; Park, J.H.; Sun, Y.K.; Yoon, C.S. Ultra-stable cycling of multi-doped (Zr, B) Li[Ni0.885Co0.100Al0.015]O2 cathode. J. Power Sources 2021, 513, 230548. [Google Scholar] [CrossRef]
- Bai, X.; Wei, A.J.; He, R.; Li, W.; Li, X.H.; Zhang, L.H.; Liu, Z.F. The structural and electrochemical performance of Mg-doped LiNi0.85Co0.10Al0.05O prepared by a solid state method. J. Electroanal. Chem. 2020, 858, 113771. [Google Scholar] [CrossRef]
- Li, W.J.; Zhuang, W.D.; Gao, M.; Zhou, Y.N.; Zhang, J.; Li, N.; Liu, X.H.; Huang, W.; Lu, S.G. New insight into the role of Mn doping on the bulk structure stability and interfacial stability of Ni-rich layered oxide. ChemNanoMat 2020, 6, 451–460. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, Q.; Li, B.H.; Manthiram, A. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 34, 229–240. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Sun, Y.Y.; Liu, S.; Li, G.R.; Gao, X.P. Na-doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-Ion batteries. ACS Appl. Energy Mater. 2018, 1, 3881–3889. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, G.T.; Yoon, C.S.; Sun, Y.K. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18580–18588. [Google Scholar] [CrossRef]
- Kim, U.H.; Park, N.Y.; Park, G.T.; Kim, H.; Yoon, C.S.; Sun, Y.K. High-energy W-doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 2020, 33, 399–407. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhou, L.M.; Wang, H.; Meng, D.C.; Qian, G.N.; Wang, Y.; He, Y.S.; Wu, Y.J.; Hong, Z.J.; Ma, Z.F.; et al. Dopants modulate crystal growth in molten salts enabled by surface energy tuning. J. Mater. Chem. A 2021, 9, 19675–19680. [Google Scholar] [CrossRef]
- Shang, G.Z.; Tang, Y.W.; Lai, Y.Q.; Wu, J.; Yang, X.; Li, H.X.; Peng, C.; Zheng, J.F.; Zhang, Z. Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage. J. Power Sources 2019, 423, 246–254. [Google Scholar] [CrossRef]
- Che, W.; Wan, X.W.; Zhang, D.Y.; Chang, C.K. Stabilized performance of LiNi0.90Co0.07Al0.03O2 cathodes via Zr4+ doping upon 4.5 V application due to the suppression of H2-H3 Phase Transitions. ACS Sustain. Chem. Eng. 2021, 9, 5536–5545. [Google Scholar] [CrossRef]
- He, H.H.; Dong, J.; Zhang, D.Y.; Chang, C.K. Effect of Nb doping on the behavior of NCA cathode: Enhanced electrochemical performances from improved lattice stability towards 4.5V application. Ceram. Int. 2020, 46, 24564–24574. [Google Scholar] [CrossRef]
- Gan, Z.G.; Hu, G.R.; Peng, Z.D.; Cao, Y.B.; Tong, H.; Du, K. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl. Surf. Sci. 2019, 481, 1228–1238. [Google Scholar] [CrossRef]
- Guo, F.Y.; Xie, Y.F.; Zhang, Y.X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2021, 1–8. [Google Scholar] [CrossRef]
Sample | a/Å | c/Å | c/a | Volume | I(003)/I(104) | Ni in Li/% | Rwp/% | R/% |
---|---|---|---|---|---|---|---|---|
NCA | 2.8709 | 14.1879 | 4.9420 | 101.268 | 1.62 | 3.09 | 1.495 | 0.928 |
W0.5-NCA | 2.8718 | 14.1926 | 4.9421 | 101.365 | 1.49 | 4.14 | 1.493 | 0.925 |
W1.0-NCA | 2.8721 | 14.1917 | 4.9412 | 101.384 | 1.38 | 6.36 | 1.463 | 1.038 |
Sample | Before Cycling | After 100 Cycles | |||
---|---|---|---|---|---|
Rs/Ω | Rct/Ω | Rs/Ω | Rf/Ω | Rct/Ω | |
NCA | 3.0 | 209.0 | 4.9 | 31.8 | 629.9 |
W1.0-NCA | 2.3 | 111.1 | 5.4 | 20.3 | 344.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Qiu, H.; Zhang, Y. Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries. Nanomaterials 2022, 12, 729. https://doi.org/10.3390/nano12050729
Zhang R, Qiu H, Zhang Y. Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries. Nanomaterials. 2022; 12(5):729. https://doi.org/10.3390/nano12050729
Chicago/Turabian StyleZhang, Rui, Hengrui Qiu, and Youxiang Zhang. 2022. "Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries" Nanomaterials 12, no. 5: 729. https://doi.org/10.3390/nano12050729
APA StyleZhang, R., Qiu, H., & Zhang, Y. (2022). Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries. Nanomaterials, 12(5), 729. https://doi.org/10.3390/nano12050729