Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells
Abstract
:Table of Contents | |
Abstract:…………………………………………………………………………………………… | 1 |
1. Introduction…………………………………………………………………………………… | 1 |
2. Fundamentals: Physical Properties of Surface Plasmons………………………………… | 3 |
3. Plasmon Thermal Effects……………………………………………………………………… | 5 |
4. Plasmonic Nanostructure Top-Down Fabrication Techniques…………………………… | 6 |
4.1. Lithographic Fabrication Techniques……………………………………………………… | 7 |
4.2. Nonlithographic Fabrication Techniques………………………………………………… | 7 |
5. Plasmonic Nanostructures for Light Trapping…………………………………………… | 8 |
6. Mechanisms of Plasmonic Enhancement Effect…………………………………………… | 9 |
7. Nanoparticle Material, Size, and Shape Effects…………………………………………… | 10 |
7.1. Nanostructures at the Front Surface……………………………………………………… | 11 |
7.2. Plasmonic Back Reflectors………………………………………………………………… | 12 |
7.3. Mismatch of the Front and Back Light Grating for Optimum Light Trapping……… | 14 |
8. Different Arrangements of Plasmonics Nanostructures in PV and Mechanisms……… | 16 |
9. Modeling the Performance of Plasmonic Solar Cells……………………………………… | 25 |
9.1. Device Designs Using Propagation of EM Waves……………………………………… | 26 |
9.2. Plasmonic Systems Based on Light Localization………………………………………… | 26 |
9.3. Problems Related to Light Scattering……………………………………………………… | 27 |
10. Summary……………………………………………………………………………………… | 27 |
1. Introduction
2. Fundamentals: Physical Properties of Surface Plasmons
3. Plasmon Thermal Effects
4. Plasmonic Nanostructure Top-Down Fabrication Techniques
4.1. Lithographic Fabrication Techniques
4.2. Nonlithographic Fabrication Techniques
5. Plasmonic Nanostructures for Light Trapping
6. Mechanisms of Plasmonic Enhancement Effect
7. Nanoparticle Material, Size, and Shape Effects
7.1. Nanostructures at the Front Surface
7.2. Plasmonic Back Reflectors
7.3. Mismatch of the Front and Back Light Grating for Optimum Light Trapping
8. Different Arrangements of Plasmonic Nanostructures in PV and Mechanisms
9. Modeling the Performance of Plasmonic Solar Cells
9.1. Device Designs Using Propagation of EM Waves
9.2. Plasmonic Systems Based on Light Localization
9.3. Problems Related to Light Scattering
10. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
µc-Si:H | Microcrystalline silicon |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
Al-BSF | Aluminum back surface field |
AAM | Anodic alumina membrane |
ARC | Antireflection coating |
AFM | Atomic force microscopy |
a-Si:H | Hydrogenated amorphous silicon |
AZO | Alumina-doped zinc oxide |
CdS | Cadmium sulfide |
CdTe | Cadmium telluride |
CIGS | Copper indium gallium diselenide |
c-Si | Crystalline silicon |
CTL | Charge carrier transport layer |
DNA | Deoxyribonucleic acid |
DPN | Dip-pen lithography |
EBL | Electron beam lithography |
EM | Electromagnetic |
FIB | Focused ion beam |
LIL | Laser interference lithography |
LSPP | Localized surface plasmon polariton |
LSPR | Localized surface plasmon resonance |
LSP | Localized surface plasmon |
MCPS | Microcone patterned substrate |
NIL | Nanoimprint lithography |
NPs | Nanoparticles |
NSL | Nanosphere lithography |
OPV | Organic photovoltaics |
PCE | Power conversion efficiency |
PV | Photovoltaics |
QCS | Quasicrystal structure |
RCWA | Rigorous coupled wave analysis |
SCS | Scattering cross-section |
SECM | Scanning electrochemical microscopy |
SEM | Scanning electron microscopy |
SERS | Surface enhanced Raman spectroscopy |
SPP | Surface plasmon polariton |
SPR | Surface plasmon resonance |
SSD | Solid-state dewetting |
SThM | Scanning thermal microscopy |
TCO | Transparent conductive oxide |
TEM | Transmission electron microscopy |
TiN | Titanium nitride |
TiO2 | Titanium oxide |
TW | Terawatt |
UV | Ultraviolet |
ZrN | Zirconium nitride |
λ | Wavelength |
Λ | Periodic structure |
References
- Shumkov, I. World May Hit 1.3 TW of Installed Solar in 2023—SolarPower Europe, Newyork. 2019. Available online: https://buildacademy.com/ (accessed on 25 January 2021).
- Wilson, G.M.; Al-Jassim, M.; Metzger, W.K.; Glunz, S.W.; Verlinden, P.; Xiong, G.; Mansfield, L.M.; Stanbery, B.J.; Zhu, K.; Yan, Y. The 2020 photovoltaic technologies roadmap. J. Phys. D Appl. Phys. 2020, 53, 493001. [Google Scholar] [CrossRef]
- Louwen, A.; van Sark, W.; Faaij, A.P.C.; Schropp, R.E. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat. Commun. 2016, 7, 13728. [Google Scholar] [CrossRef] [PubMed]
- Veith-Wolf, B.A.; Schäfer, S.; Brendel, R.; Schmidt, J. Reassessment of intrinsic lifetime limit in n-type crystalline silicon and implication on maximum solar cell efficiency. Sol. Energy Mater. Sol. Cells 2018, 186, 194–199. [Google Scholar] [CrossRef]
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper). 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf (accessed on 25 January 2021).
- Ali, A.; Park, H.; Mall, R.; Aïssa, B.; Sanvito, S.; Bensmail, H.; Belaidi, A.; El-Mellouhi, F. Machine Learning Accelerated Recovery of the Cubic Structure in Mixed-Cation Perovskite Thin Films. Chem. Mater. 2020, 32, 2998–3006. [Google Scholar] [CrossRef]
- Liang, M.; Ali, A.; Belaidi, A.; Hossain, M.I.; Ronan, O.; Downing, C.; Tabet, N.; Sanvito, S.; Ei-Mellouhi, F.; Nicolosi, V. Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. NPJ 2D Mater. Appl. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Cushing, S.K.; Wu, N. Plasmon-Enhanced Solar Energy Harvesting. Electrochem. Soc. Interface 2013, 22, 63–67. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Fabrication and Replication of Periodic Nanopyramid Structures by Laser Interference Lithography and UV Nanoimprint Lithography for Solar Cells Applications. In Micro/Nanolithography; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kakavelakis, G.; Vangelidis, I.; Heuer-Jungemann, A.; Kanaras, A.G.; Lidorikis, E.; Stratakis, E.; Kymakis, E. Plasmonic Backscattering Effect in High-Efficient Organic Photovoltaic Devices. Adv. Energy Mater. 2015, 6, 1501640. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Wang, X.; Liu, J. A Surface Design for Enhancement of Light Trapping Efficiencies in Thin Film Silicon Solar Cells. Plasmonics 2015, 11, 1003–1010. [Google Scholar] [CrossRef]
- In, S.; Park, N. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption. Sci. Rep. 2016, 6, 21784. [Google Scholar] [CrossRef] [Green Version]
- Paci, B.; Kakavelakis, G.; Generosi, A.; Wright, J.; Ferrero, C.; Stratakis, E.; Kymakis, E. Improving stability of organic devices: A time/space resolved structural monitoring approach applied to plasmonic photovoltaics. Sol. Energy Mater. Sol. Cells 2017, 159, 617–624. [Google Scholar] [CrossRef]
- Baran, D.; Ashraf, R.S.; Hanifi, D.A.; Abdelsamie, M.; Gasparini, N.; Röhr, J.A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 2016, 16, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.C.; Scully, S.R.; Hardin, B.E.; Rowell, M.W.; McGehee, M.D. Polymer-based solar cells. Mater. Today 2007, 10, 28–33. [Google Scholar] [CrossRef]
- Falke, S.M.; Rozzi, C.A.; Brida, D.; Maiuri, M.; Amato, M.; Sommer, E.; De Sio, A.; Rubio, A.; Cerullo, G.; Molinari, E.; et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 2014, 344, 1001–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.I.; Lee, S.; Lee, J.M.; Nam, S.A.; Jeon, T.; Han, S.W.; Kim, S.O. High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano 2014, 8, 10305–10312. [Google Scholar] [CrossRef]
- Kozanoglu, D.; Apaydin, D.H.; Cirpan, A.; Esenturk, E.N. Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org. Electron. 2013, 14, 1720–1727. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, P.E.; Cheok, Q.; Iqbal, A.; Aissa, B. Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review. Int. J. Energy Res. 2020, 45, 65–102. [Google Scholar] [CrossRef]
- Liu, C.-M.; Chen, C.-M.; Su, Y.-W.; Wang, S.-M.; Wei, K.-H. The dual localized surface plasmonic effects of gold nanodots and gold nanoparticles enhance the performance of bulk heterojunction polymer solar cells. Org. Electron. 2013, 14, 2476–2483. [Google Scholar] [CrossRef]
- Xu, W.-L.; Zeng, P.; Wu, B.; Zheng, F.; Zhu, F.; Smith, T.A.; Ghiggino, K.P.; Hao, X.-T. Effects of Processing Solvent on the Photophysics and Nanomorphology of Poly(3-butyl-thiophene) Nanowires:PCBM Blends. J. Phys. Chem. Lett. 2016, 7, 1872–1879. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Nanopyramid Structures with Light Harvesting and Self-Cleaning Properties for Solar Cells. In Emerging Solar Energy Materials; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Amalathas, A.P.; Alkaisi, M.M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 2016, 57, 54–58. [Google Scholar] [CrossRef]
- Tsui, K.-H.; Lin, Q.; Chou, H.; Zhang, Q.; Fu, H.; Qi, P.; Fan, Z. Low-Cost, Flexible, and Self-Cleaning 3D Nanocone Anti-Reflection Films for High-Efficiency Photovoltaics. Adv. Mater. 2014, 26, 2805–2811. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Periodic upright nanopyramid fabricated by ultraviolet curable nanoimprint lithography for thin film solar cells. Int. J. Nanotechnol. 2017, 14. [Google Scholar] [CrossRef]
- Nechache, R.; Nicklaus, M.; Diffalah, N.; Ruediger, A.; Rosei, F. Pulsed laser deposition growth of rutile TiO2 nanowires on Silicon substrates. Appl. Surf. Sci. 2014, 313, 48–52. [Google Scholar] [CrossRef]
- Sivasubramaniam, S.; Alkaisi, M.M. Inverted nanopyramid texturing for silicon solar cells using interference lithography. Microelectron. Eng. 2014, 119, 146–150. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, P.; Fan, Q.H.; Hou, G. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment. Coatings 2017, 7, 236. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Keshmiri, H.; Kolb, F.; Dimopoulos, T.; List-Kratochvil, E.J.W.; Dostalek, J. Multidiffractive Broadband Plasmonic Absorber. Adv. Opt. Mater. 2015, 4, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Palanchoke, U.; Jovanov, V.; Kurz, H.; Dewan, R.; Magnus, P.; Stiebig, H.; Knipp, D. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells. Appl. Phys. Lett. 2013, 102, 83501. [Google Scholar] [CrossRef]
- Macdonald, D.; Cuevas, A.; Kerr, M.; Samundsett, C.; Ruby, D.; Winderbaum, S.; Leo, A. Texturing industrial multicrystalline silicon solar cells. Sol. Energy 2004, 76, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Kumaravelu, G.; Alkaisi, M.; Bittar, A.; Macdonald, D.; Zhao, J. Damage studies in dry etched textured silicon surfaces. Curr. Appl. Phys. 2004, 4, 108–110. [Google Scholar] [CrossRef]
- Wang, J.; Du, J. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications. Appl. Sci. 2016, 6, 239. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Huang, Y.; Jen, Y.; Ganguly, A.; Chen, K.-H.; Chen, L. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010, 69, 1–35. [Google Scholar] [CrossRef]
- Chiu, W.; Alkaisi, M.; Kumaravelu, G.; Blaikie, R.; Reeves, R.; Bittar, A. Sub-Wavelength Texturing for Solar Cells Using Interferometric Lithography. In Advances in Science and Technology; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2006; Volume 51, pp. 115–120. [Google Scholar] [CrossRef]
- Yu, Z.; Raman, A.; Fan, S. Fundamental limit of nanophotonic light-trapping in solar cells. Proc. Natl. Acad. Sci. USA 2010, 107, 17491–17496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, F.; Xie, Y.; He, G.; Chu, H.; Liu, W.; Chen, Z. Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale 2019, 12, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Morawiec, S.; Crupi, I. Light trapping by plasmonic nanoparticles. In Solar Cells and Light Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 277–313. [Google Scholar] [CrossRef]
- Hara, K.; Lertvachirapaiboon, C.; Ishikawa, R.; Ohdaira, Y.; Shinbo, K.; Kato, K.; Kaneko, F.; Baba, A. Inverted organic solar cells enhanced by grating-coupled surface plasmons and waveguide modes. Phys. Chem. Chem. Phys. 2016, 19, 2791–2796. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.T.; Nguyen, T.K.; Le, K.Q. Revisited design optimization of metallic gratings for plasmonic light-trapping enhancement in thin organic solar cells. Opt. Commun. 2017, 382, 241–245. [Google Scholar] [CrossRef]
- Chalh, M.; Vedraine, S.; Lucas, B.; Ratier, B. Plasmonic Ag nanowire network embedded in zinc oxide nanoparticles for inverted organic solar cells electrode. Sol. Energy Mater. Sol. Cells 2016, 152, 34–41. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Photonic crystal light trapping: Beyond 30% conversion efficiency for silicon photovoltaics. APL Photon. 2020, 5, 020902. [Google Scholar] [CrossRef]
- Lu, X.; Rycenga, M.; Skrabalak, S.E.; Wiley, B.; Xia, Y. Chemical Synthesis of Novel Plasmonic Nanoparticles. Annu. Rev. Phys. Chem. 2009, 60, 167–192. [Google Scholar] [CrossRef]
- Nayfeh, M.H. Optics in Nanotechnology. In Optics in Our Time; Springer: Cham, Switzerland, 2016; pp. 223–264. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Dai, Y.; Yu, L.; Huang, B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Hantanasirisakul, K.; Abdala, A.; Urbankowski, P.; Zhao, M.-Q.; Anasori, B.; Gogotsi, Y.; Aïssa, B.; Mahmoud, K.A. Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries. Langmuir 2018, 34, 11325–11334. [Google Scholar] [CrossRef]
- Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Adv. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Pescaglini, A.; Martín, A.; Cammi, D.; Juška, G.; Ronning, C.; Pelucchi, E.; Iacopino, D. Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection. Nano Lett. 2014, 14, 6202–6209. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Quan, Q.; Chen, H.-M.; Sun, Y.; Xu, Y.-J. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.G.; Faucheaux, J.A.; Jain, P. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today 2015, 10, 67–80. [Google Scholar] [CrossRef]
- Cushing, S.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef] [PubMed]
- Christopher, P.; Xin, H.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472. [Google Scholar] [CrossRef]
- Ingram, D.B.; Linic, S. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. J. Am. Chem. Soc. 2011, 133, 5202–5205. [Google Scholar] [CrossRef]
- Zhang, N.; Han, C.; Fu, X.; Xu, Y.-J. Function-Oriented Engineering of Metal-Based Nanohybrids for Photoredox Catalysis: Exerting Plasmonic Effect and Beyond. Chem 2018, 4, 1832–1861. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.A.; Bardhan, R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2013, 6, 2502–2530. [Google Scholar] [CrossRef]
- Haschke, J.; Lemerle, R.; Aissa, B.; Abdallah, A.; Kivambe, M.M.; Boccard, M.; Ballif, C. Annealing of Silicon Heterojunction Solar Cells: Interplay of Solar Cell and Indium Tin Oxide Properties. IEEE J. Photovolt. 2019, 9, 1202–1207. [Google Scholar] [CrossRef]
- Coppens, Z.J.; Li, W.; Walker, D.G.; Valentine, J.G. Probing and Controlling Photothermal Heat Generation in Plasmonic Nanostructures. Nano Lett. 2013, 13, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion. J. Phys. Chem. C 2015, 119, 25518–25528. [Google Scholar] [CrossRef]
- Guler, U.; Shalaev, V.M.; Boltasseva, A. Nanoparticle plasmonics: Going practical with transition metal nitrides. Mater. Today 2014, 18, 227–237. [Google Scholar] [CrossRef]
- Guler, U.; Naik, G.V.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl. Phys. A 2012, 107, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wu, H.J.; Zhou, X.; Qi, R.; Xu, L.; Guo, Y.; Liu, X. Enhanced thermal effect of plasmonic nanostructures confined in discoidal porous silicon particles. RSC Adv. 2020, 10, 30840–30847. [Google Scholar] [CrossRef]
- Wu, J.; Gan, X. Three dimensional nanoparticle trapping enhanced by surface plasmon resonance. Opt. Express 2010, 18, 27619–27626. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Würger, A.; Cichos, F. Trapping of single nano-objects in dynamic temperature fields. Phys. Chem. Chem. Phys. 2014, 16, 15207–15213. [Google Scholar] [CrossRef] [Green Version]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic Reduction of Plasmon Damping in Gold Nanorods. Phys. Rev. Lett. 2002, 88, 077402. [Google Scholar] [CrossRef]
- Baffou, G.; Berto, P.; Ureña, E.B.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7, 6478–6488. [Google Scholar] [CrossRef]
- Desiatov, B.; Goykhman, I.; Levy, U. Direct Temperature Mapping of Nanoscale Plasmonic Devices. Nano Lett. 2014, 14, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; He, L.-Q.; Hu, Y.-W.; Lu, X.; Li, G.-R.; Liu, B.; Ren, B.; Tong, Y.; Fang, P.-P. Quantitative Detection of Photothermal and Photoelectrocatalytic Effects Induced by SPR from Au@Pt Nanoparticles. Angew. Chem. Int. Ed. 2015, 54, 11462–11466. [Google Scholar] [CrossRef] [PubMed]
- Herzog, J.; Knight, M.; Natelson, D. Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires. Nano Lett. 2014, 14, 499–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326. [Google Scholar] [CrossRef]
- Brites, C.; Lima, P.; Silva, N.; Millán, A.; Amaral, V.; Palacio, F.; Carlos, L. A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Adv. Mater. 2010, 22, 4499–4504. [Google Scholar] [CrossRef] [Green Version]
- Baffou, G.; Kreuzer, M.P.; Kulzer, F.; Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 2009, 17, 3291–3298. [Google Scholar] [CrossRef]
- Yu, Y.; Williams, J.D.; Willets, K.A. Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy. Faraday Discuss. 2018, 210, 29–39. [Google Scholar] [CrossRef]
- Yu, Y.; Sundaresan, V.; Willets, K.A. Hot Carriers versus Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions. J. Phys. Chem. C 2018, 122, 5040–5048. [Google Scholar] [CrossRef]
- Baffou, G. Gold nanoparticles as nanosources of heat. Photoniques 2018, 42–47. [Google Scholar] [CrossRef]
- Polte, J. Fundamental growth principles of colloidal metal nanoparticles—A new perspective. CrystEngComm 2015, 17, 6809–6830. [Google Scholar] [CrossRef] [Green Version]
- Liška, J.; Ligmajer, F.; Pinho, N.P.V.P.; Kejik, L.; Kvapil, M.; Dvořák, P.; Horký, M.; Leitner, N.S.; Reimhult, E.; Šikola, T. Effect of deposition angle on fabrication of plasmonic gold nanocones and nanodiscs. Microelectron. Eng. 2020, 228, 111326. [Google Scholar] [CrossRef]
- Khoury, M. Effect of molecular weight on poly(methyl methacrylate) resolution. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1996, 14, 75. [Google Scholar] [CrossRef]
- Bentouaf, A.; Mebsout, R.; Rached, H.; Amari, S.; Reshak, A.; Aïssa, B. Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2 (X = Co and Fe). J. Alloy. Compd. 2016, 689, 885–893. [Google Scholar] [CrossRef]
- Västi, J. Fabrication of Large Area Surface Plasmonic Nanogratings. Master’s Thesis, Aslto University, Espoo, Finland, 2020. [Google Scholar]
- Khan, A. Multiple Fano resonances in bimetallic layered nanostructures. Int. Nano Lett. 2014, 4, 110. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Akinoglu, E.M.; Wu, L.; Dodge, T.; Wang, X.; Zhou, G.; Naughton, M.J.; Kempa, K.; Giersig, M. Nano-bridged nanosphere lithography. Nanotechnology 2020, 31, 245302. [Google Scholar] [CrossRef]
- Habib, M.A.; Barkat, M.; Aissa, B.; Denidni, T.A. CA-CFAR DETECTION PERFORMANCE OF RADAR TARGETS EMBEDDED IN “NON CENTERED CHI-2 GAMMA” CLUTTER. Prog. Electromagn. Res. 2008, 88, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, C.; Li, Q.; Xiang, X.; Yang, H.; Wang, X.; Gao, J. Hybrid Nanostructured Antireflection Coating by Self-Assembled Nanosphere Litho. Coatings 2019, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Lim, J.W.; Kim, J.G.; Wang, H.; Kang, B.-H.; Park, Y.W.; Kim, H.; Jang, Y.J.; Kim, J.; Kim, D.H.; et al. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency. ACS Nano 2016, 10, 10143–10151. [Google Scholar] [CrossRef]
- Seo, J.-H.; Park, J.H.; Kim, S.-I.; Park, B.J.; Ma, Z.; Choi, J.; Ju, B.-K. Nanopatterning by Laser Interference Lithography: Applications to Optical Devices. J. Nanosci. Nanotechnol. 2014, 14, 1521–1532. [Google Scholar] [CrossRef]
- Du, K.; Ding, J.; Liu, Y.; Wathuthanthri, I.; Choi, C.-H. Stencil Lithography for Scalable Micro- and Nanomanufacturing. Micromachines 2017, 8, 131. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2019, 32, e1901958. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Kim, S.; Kim, H.; Lee, J.; McAllister, K.; Kim, J.; Pyo, S.; Kim, J.S.; Campbell, E.E.B.; Lee, W.H.; et al. Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics. Sci. Rep. 2015, 5, srep10220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savu, V.; Xie, S.; Brugger, J. 100 mm dynamic stencils pattern sub-micrometre structures. Nanoscale 2011, 3, 2739–2742. [Google Scholar] [CrossRef]
- Jung, S.; Choi, Y.-S.; Kim, J.-S. Stencil-based 3D facial relief creation from RGBD images for 3D printing. ETRI J. 2020, 42, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Shahidan, M.F.S.; Song, J.; James, T.D.; Roberts, A. Multilevel nanoimprint lithography with a binary mould for plasmonic colour printing. Nanoscale Adv. 2020, 2, 2177–2184. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Haslinger, M.J.; Mitteramskogler, T.; Mühlberger, M.; Shoshi, A.; Brückl, H.; Bauch, M.; Dimopoulos, T.; Schmid, B.; Schotter, J. Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography. Nanomaterials 2019, 9, 1790. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, S.; Li, Z. Nanoimprint lithography for nanodevice fabrication. Nano Converg. 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C.A. "Dip-Pen" Nanolithography. Science 1999, 283, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, A.B.; Huo, F.; Mirkin, C.A. Molecular printing. Nat. Chem. 2009, 1, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.L.; McGowan, S.; Nikolova, L.; Evans, J.E.; Teslich, N.; Lu, J.P.; Lagrange, T.; Rosei, F.; Siwick, B.J.; Browning, N.D. In situ laser crystallization of amorphous silicon: Controlled nanosecond studies in the dynamic transmission electron microscope. Appl. Phys. Lett. 2010, 97, 032102. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.H.; Ali, A.; Kim, H.C.; Hyun, M.T. Fabrication of dielectric poly (4-vinylphenol) thin films by using the electrohydrodynamic atomization technique. J. Korean Phys. Soc. 2013, 62, 269–274. [Google Scholar] [CrossRef]
- Ali, S.; Bae, J.; Lee, C.H.; Kobayashi, N.; Shin, S.; Ali, A. Resistive switching device with highly asymmetric current–voltage characteristics: A solution to backward sneak current in passive crossbar arrays. Nanotechnology 2018, 29, 455201. [Google Scholar] [CrossRef]
- Thompson, C.V. Solid-State Dewetting of Thin Films. Annu. Rev. Mater. Sci. 2012, 42, 399–434. [Google Scholar] [CrossRef]
- Pandey, P.; Sui, M.; Zhang, Q.; Li, M.-Y.; Kunwar, S.; Lee, J. Systematic control of the size, density and configuration of Pt nanostructures on sapphire (0 0 0 1) by the variation of deposition amount and dwelling time. Appl. Surf. Sci. 2016, 368, 198–207. [Google Scholar] [CrossRef]
- Choi, K.H.; Ali, A.; Rahman, A.; Mohammad, N.M.; Rahman, K.; Khan, A.; Khan, S.; Kim, D.S. Electrode configuration effects on the electrification and voltage variation in an electrostatic inkjet printing head. J. Micromech. Microeng. 2010, 20, 75033. [Google Scholar] [CrossRef]
- Sui, M.; Li, M.-Y.; Kunwar, S.; Pandey, P.; Zhang, Q.; Lee, J. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire. PLoS ONE 2017, 12, e0177048. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Zhang, J.; Qi, X.; Li, J.; Wang, N.; Zhu, Y. A study on the correlation between the dewetting temperature of Ag film and SERS intensity. Sci. Rep. 2017, 7, 14771. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Kong, X.-T.; Wang, Z.; Govorov, A.O.; Kortshagen, U.R. Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering. ACS Photon. 2017, 4, 2881–2890. [Google Scholar] [CrossRef]
- Goetz, S.; Bauch, M.; Dimopoulos, T.; Trassl, S. Ultrathin sputter-deposited plasmonic silver nanostructures. Nanoscale Adv. 2020, 2, 869–877. [Google Scholar] [CrossRef]
- Xu, S.; Lei, Y. Template-Assisted Fabrication of Nanostructured Arrays for Sensing Applications. ChemPlusChem 2018, 83, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, Y.; Liu, G.; Chen, Q.; Li, Y.; Shi, L.; Liu, Z.; Liu, X. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Nanoscale Res. Lett. 2019, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Solanki, C.S. Solar Photovoltaics: Fundamentals, Technologies and Applications, 3rd ed.; PHI Learning Pvt. Ltd.: New Delhi, India, 2015. [Google Scholar]
- Amalathas, A.P.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santbergen, R.; Temple, T.L.; Liang, R.; Smets, A.H.M.; Swaaij, R.A.C.M.M.V.; Zeman, M. Application of plasmonic silver island films in thin-film silicon solar cells. J. Opt. 2012, 14. [Google Scholar] [CrossRef]
- Gee, J.M. The effect of parasitic absorption losses on light trapping in thin silicon solar cells. In Proceedings of the Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference IEEE, Las Vegas, NV, USA, 26–30 September 1988; pp. 549–554. [Google Scholar]
- Xue, M.; Li, L.; de Villers, B.J.T.; Shen, H.; Zhu, J.; Yu, Z.; Stieg, A.Z.; Pei, Q.; Schwartz, B.J.; Wang, K.L. Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl. Phys. Lett. 2011, 98, 253302. [Google Scholar] [CrossRef]
- Du, P.; Jing, P.; Li, D.; Cao, Y.; Liu, Z.; Sun, Z. Plasmonic Ag@Oxide Nanoprisms for Enhanced Performance of Organic Solar Cells. Small 2015, 11, 2454–2462. [Google Scholar] [CrossRef]
- Mandoc, M.M.; Veurman, W.; Koster, L.J.A.; de Boer, B.; Blom, P.W.M. Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells. Adv. Funct. Mater. 2007, 17, 2167–2173. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Garnett, E.; Wang, S.; Yu, Z.; Fan, S.; Brongersma, M.L.; McGehee, M.D.; Cui, Y. Hybrid Silicon Nanocone–Polymer Solar Cells. Nano Lett. 2012, 12, 2971–2976. [Google Scholar] [CrossRef]
- Bordjiba, T.; Mohamedi, M.; Dao, L.H.; Aissa, B.; El Khakani, M.A. Enhanced physical and electrochemical properties of nanostructured carbon nanotubes coated microfibrous carbon paper. Chem. Phys. Lett. 2007, 441, 88–93. [Google Scholar] [CrossRef]
- Wang, B.; Leu, P.W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology 2012, 23, 194003. [Google Scholar] [CrossRef]
- Lu, Y.; Lal, A. High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography. Nano Lett. 2010, 10, 4651–4656. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.-S.; Lin, C.-A.; Lien, W.-C.; Chang, H.-C.; Wang, Y.-L.; He, J.-H. Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 2011, 5, 7748–7753. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-R.; Wang, H.-P.; Lin, C.-A.; He, J.-H. Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings. J. Appl. Phys. 2009, 106, 114310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Razavi, H.; Do, J.-W.; Moriwaki, A.; Ergen, O.; Chueh, Y.-L.; Leu, P.; Ho, J.; Takahashi, T.; Reichertz, L.A.; et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, R.; Fan, Z.; Takei, K.; Javey, A. Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy 2011, 1, 132–144. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y. Optical Absorption and Thermal Effects of Plasmonic Nanostructures. Nanoplasmonics 2017. [Google Scholar] [CrossRef] [Green Version]
- Han, S.E.; Chen, G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Lett. 2010, 10, 1012–1015. [Google Scholar] [CrossRef]
- Leung, S.-F.; Yu, M.; Lin, Q.; Kwon, K.; Ching, K.L.; Gu, L.; Yu, K.; Fan, Z. Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays. Nano Lett. 2012, 12, 3682–3689. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 346–349. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Ho, J.Y.L.; Wong, M.; Kwok, H.S. Nanopyramid Structure for Ultrathin c-Si Tandem Solar Cells. Nano Lett. 2014, 14, 2563–2568. [Google Scholar] [CrossRef] [Green Version]
- Mavrokefalos, A.; Han, S.E.; Yerci, S.; Branham, M.S.; Chen, G. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano Lett. 2012, 12, 2792–2796. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.; Narasimhan, V.; Ruan, Z.; Xie, C.; Fan, S.; Cui, Y. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 2012, 3, 664. [Google Scholar] [CrossRef] [Green Version]
- Grandidier, J.; Callahan, D.M.; Munday, J.N.; Atwater, H.A. Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Adv. Mater. 2011, 23, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; White, J.S.; Park, J.-S.; Schuller, J.A.; Clemens, B.M.; Brongersma, M.L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Naughton, M.J.; Kempa, K.; Ren, Z.F.; Gao, Y.; Rybczynski, J.; Argenti, N.; Gao, W.; Wang, Y.; Peng, Y.; Naughton, J.R.; et al. Efficient nanocoax-based solar cells. Phys. Status solidi (RRL)–Rapid Res. Lett. 2010, 4, 181–183. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jiang, R.; You, P.; Zhu, X.; Wang, J.; Yan, F. Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ. Sci. 2016, 9, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Hergert Wolfram, W.T. The Mie Theory: Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Deceglie, M.G.; Ferry, V.E.; Alivisatos, A.P.; Atwater, H.A.; Alivisatos, P. Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling. Nano Lett. 2012, 12, 2894–2900. [Google Scholar] [CrossRef] [Green Version]
- Le Borgne, V.; Castrucci, P.; Del Gobbo, S.; Scarselli, M.; De Crescenzi, M.; Mohamedi, M.; El Khakani, M.A. Enhanced photocurrent generation from UV-laser-synthesized-single-wall-carbon-nanotubes/n-silicon hybrid planar devices. Appl. Phys. Lett. 2010, 97, 193105. [Google Scholar] [CrossRef]
- Morawiec, S.; Mendes, M.J.; Filonovich, S.A.; Mateus, T.; Mirabella, S.; Águas, H.; Ferreira, I.; Simone, F.; Fortunato, E.; Martins, R.; et al. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Opt. Express 2014, 22, A1059–A1070. [Google Scholar] [CrossRef]
- Yao, K.; Salvador, M.; Chueh, C.-C.; Xin, X.-K.; Xu, Y.-X.; Dequilettes, D.W.; Hu, T.; Chen, Y.; Ginger, D.S.; Jen, A.K.-Y. A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Adv. Energy Mater. 2014, 4. [Google Scholar] [CrossRef]
- Moeferdt, M.; Kiel, T.; Sproll, T.; Intravaia, F.; Busch, K. Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects. Phys. Rev. B 2018, 97, 075431. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.A. Plasmonics: Fundamentals and Applications, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Pillai, S.; Catchpole, K.; Trupke, T.; Green, M. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007, 101, 093105. [Google Scholar] [CrossRef]
- Wang, X.; Gogol, P.; Cambril, E.; Palpant, B. Near- and Far-Field Effects on the Plasmon Coupling in Gold Nanoparticle Arrays. J. Phys. Chem. C 2012, 116, 24741–24747. [Google Scholar] [CrossRef]
- Lindquist, N.C.; Nagpal, P.; McPeak, K.M.; Norris, D.J.; Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 2012, 75, 036501. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, K.; Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008, 93, 191113. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793–21800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, S.; Green, M. Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2010, 94, 1481–1486. [Google Scholar] [CrossRef]
- Beck, F.; Polman, A.; Catchpole, K. Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 2009, 105, 114310. [Google Scholar] [CrossRef]
- Xu, G.; Tazawa, M.; Jin, P.; Nakao, S.; Yoshimura, K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 2003, 82, 3811–3813. [Google Scholar] [CrossRef]
- Mertens, H.G.; Verhoeven, J.W.; Polman, A.; Tichelaar, F.D. Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon. Appl. Phys. Lett. 2004, 85, 1317–1319. [Google Scholar] [CrossRef]
- Saravanan, S. Optical pathlength enhancement in ultrathin silicon solar cell using decorated silver nanoparticles on aluminium grating. Nanosyst. Phys. Chem. Math. 2020, 11, 86–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, Z.; Stokes, N.; Jia, B.; Shi, Z.; Gu, M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 2012, 100, 151101. [Google Scholar] [CrossRef]
- Uhrenfeldt, C.; Villesen, T.F.; Têtu, A.; Johansen, B.; Larsen, A.N. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front. Opt. Express 2015, 23, A525–A538. [Google Scholar] [CrossRef] [PubMed]
- Hlaing, M.; Gebear-Eigzabher, B.; Roa, A.; Marcano, A.; Radu, D.; Lai, C.-Y. Absorption and scattering cross-section extinction values of silver nanoparticles. Opt. Mater. 2016, 58, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Paszkiewicz-Gawron, M.; Gołąbiewska, A.; Rajski, S.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. Synthesis and Characterization of Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications. J. Nanomater. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2019, 192, 118–127. [Google Scholar] [CrossRef]
- Rehman, Q.; Khan, A.D.; Khan, A.D.; Noman, M.; Ali, H.; Rauf, A.; Ahmad, M.S. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell. RSC Adv. 2019, 9, 34207–34213. [Google Scholar] [CrossRef] [Green Version]
- Ferry, V.; Sweatlock, L.A.; Pacifici, D.; Atwater, H.A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8, 4391–4397. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Paliwal, A.; Gupta, V.; Tomar, M. Plasmon-Assisted Crystalline Silicon Solar Cell with TiO2 as Anti-Reflective Coating. Plasmonics 2020, 15, 1091–1101. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Khan, A.D.; Amin, M. Tunable Salisbury Screen Absorber Using Square Lattice of Plasmonic Nanodisk. Plasmonics 2017, 12, 257–262. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, A.; Noman, M.; Rehman, A.U. Novel Multi-Broadband Plasmonic Absorber Based on a Metal-Dielectric-Metal Square Ring Array. Plasmonics 2018, 13, 591–597. [Google Scholar] [CrossRef]
- Liu, X.; Starr, T.; Starr, A.F.; Padilla, W.J. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Phys. Rev. Lett. 2010, 104, 207403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.; Khan, A. Tunable Fano Resonances and Electromagnetically Induced Transparency in All-Dielectric Holey Block. Plasmonics 2015, 10, 1687–1693. [Google Scholar] [CrossRef]
- Khan, A.; Amin, M.; Ali, A.; Khan, S.D.; Khan, R. Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer. Appl. Phys. A 2015, 120, 641–649. [Google Scholar] [CrossRef]
- Cheng, C.; Gustavsen, K.R.; Wang, K. Plasmon-induced visible light absorption arising from edge-interfaces of titanium-oxides nanocomposites. Opt. Mater. 2021, 113, 110847. [Google Scholar] [CrossRef]
- Hungerford, C.D.; Fauchet, P.M. Design of a plasmonic back reflector using Ag nanoparticles with a mirror support for an a-Si:H solar cell. AIP Adv. 2017, 7, 75004. [Google Scholar] [CrossRef] [Green Version]
- Crudgington, L.; Rahman, T.; Boden, S. Development of amorphous silicon solar cells with plasmonic light scattering. Vacuum 2017, 139, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Su, J.; Wang, X. A Design of Thin Film Silicon Solar Cells Based on Silver Nanoparticle Arrays. Plasmonics 2015, 10, 633–641. [Google Scholar] [CrossRef]
- Desta, D.; Rizzoli, R.; Summonte, C.; Pereira, R.N.; Larsen, A.N.; Balling, P.; Ram, S.K. Nanomolded buried light-scattering (BLiS) back-reflectors using dielectric nanoparticles for light harvesting in thin-film silicon solar cells. EPJ Photovolt. 2020, 11, 2. [Google Scholar] [CrossRef]
- Eisele, C.; Nebel, C.E.; Stutzmann, M. Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys. 2001, 89, 7722–7726. [Google Scholar] [CrossRef]
- Haase, C.; Stiebig, H. Optical properties of thin-film silicon solar cells with grating couplers. Prog. Photovolt. Res. Appl. 2006, 14, 629–641. [Google Scholar] [CrossRef]
- Aissa, B.; Hamoudi, Z.; Takahashi, H.; Tohji, K.; Mohamedi, M.; El Khakani, M.A. Carbon nanohorns-coated microfibers for use as free-standing electrodes for electrochemical power sources. Electrochem. Commun. 2009, 11, 862–866. [Google Scholar] [CrossRef]
- Sai, H.; Fujiwara, H.; Kondo, M.; Kanamori, Y. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern. Appl. Phys. Lett. 2008, 93, 143501. [Google Scholar] [CrossRef]
- Wang, K.X.; Yu, Z.; Liu, V.; Cui, Y.; Fan, S. Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings. Nano Lett. 2012, 12, 1616–1619. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, A.; Chauhan, A.; Keizman, D.; Shalev, G. Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission. Nanoscale 2019, 11, 3681–3688. [Google Scholar] [CrossRef]
- Putnam, M.C.; Turner-Evans, D.B.; Kelzenberg, M.D.; Boettcher, S.W.; Lewis, N.S.; Atwater, H.A. 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 2009, 95, 163116. [Google Scholar] [CrossRef] [Green Version]
- Tsakalakos, L.; Shih, M.-Y.; Leboeuf, S.F.; Pietrzykowski, M.; Sulima, O.V.; Rand, J.; Davuluru, A.; Rapol, U.; Balch, J.; Codella, P.J.; et al. Strong broadband optical absorption in silicon nanowire films. J. Nanophoton. 2007, 1, 013552. [Google Scholar] [CrossRef]
- Callahan, D.M.; Munday, J.N.; Atwater, H.A. Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Lett. 2012, 12, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Menon, R. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 2013, 22, A99–A110. [Google Scholar] [CrossRef]
- Meng, X.; Depauw, V.; Gomard, G.; El Daif, O.; Trompoukis, C.; Drouard, E.; Jamois, C.; Fave, A.; Dross, F.; Gordon, I.; et al. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. Opt. Express 2012, 20, A465–A475. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hsu, C.-M.; Yu, Z.; Fan, S.; Cui, Y. Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Lett. 2009, 10, 1979–1984. [Google Scholar] [CrossRef]
- Chutinan, A.; Kherani, N.P.; Zukotynski, S. High-efficiency photonic crystal solar cell architecture. Opt. Express 2009, 17, 8871–8878. [Google Scholar] [CrossRef] [PubMed]
- Kelzenberg, M.D.; Turner-Evans, D.B.; Kayes, B.M.; Filler, M.A.; Putnam, M.C.; Lewis, A.N.S.; Atwater, H.A. Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells. Nano Lett. 2008, 8, 710–714. [Google Scholar] [CrossRef]
- Aïssa, B.; Nedil, M.; Kroeger, J.; Ali, A.; Isaifan, R.; Essehli, R.; A Mahmoud, K. Graphene nanoplatelet doping of P3HT:PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance. Nanotechnology 2018, 29, 105405. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Park, K.H.; Seo, J.H.; Seifter, J.; Jeon, J.H.; Kim, J.K.; Park, J.H.; Park, O.O.; Heeger, A.J. Enhanced Power Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters. Adv. Energy Mater. 2011, 1, 766–770. [Google Scholar] [CrossRef]
- Wang, D.H.; Kim, D.Y.; Choi, K.W.; Seo, J.H.; Im, S.H.; Park, J.H.; Park, O.O.; Heeger, A.J. Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5519–5523. [Google Scholar] [CrossRef]
- Kim, W.; Cha, B.G.; Kim, J.K.; Kang, W.; Kim, E.; Ahn, T.K.; Wang, D.H.; Du, Q.G.; Cho, J.H.; Kim, J.; et al. Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem 2014, 7, 3452–3458. [Google Scholar] [CrossRef]
- Gollu, S.R.; Sharma, R.; Srinivas, G.; Kundu, S.; Gupta, D. Incorporation of silver and gold nanostructures for performance improvement in P3HT: PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer. Org. Electron. 2016, 29, 79–87. [Google Scholar] [CrossRef]
- Sygletou, M.; Tzourmpakis, P.; Petridis, C.; Konios, D.; Fotakis, C.; Kymakis, E.; Stratakis, E. Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics. J. Mater. Chem. A 2015, 4, 1020–1027. [Google Scholar] [CrossRef]
- Ren, X.; Cheng, J.; Zhang, S.; Li, X.; Rao, T.; Huo, L.; Hou, J.; Choy, W.C.H. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small 2016, 12, 5200–5207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, Y.; Peng, L.; Li, X.; Chen, S.; Feng, X.; Guan, Y.; Huang, W. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Sci. Rep. 2016, 6, 25036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Li, L.; Xiao, S.; Yuan, K.; Yang, H.; Chen, L.; Chen, Y. In situ implanting carbon nanotube-gold nanoparticles into ZnO as efficient nanohybrid cathode buffer layer for polymer solar cells. Org. Electron. 2016, 38, 350–356. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Zhang, X.; Zhang, Z.; Liu, C.; Shen, L.; Guo, W.; Ruan, S. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect. Phys. Chem. Chem. Phys. 2016, 18, 24285–24289. [Google Scholar] [CrossRef]
- Chi, D.; Lu, S.; Xu, R.; Liu, K.; Cao, D.; Wen, L.; Mi, Y.; Wang, Z.; Lei, Y.; Qu, S.; et al. Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale 2015, 7, 15251–15257. [Google Scholar] [CrossRef] [Green Version]
- Malureanu, R.; Lavrinenko, A. Ultra-thin films for plasmonics: A technology overview. Nanotechnol. Rev. 2015, 4. [Google Scholar] [CrossRef]
- Shen, P.; Liu, Y.; Long, Y.; Shen, L.; Kang, B. High-Performance Polymer Solar Cells Enabled by Copper Nanoparticles-Induced Plasmon Resonance Enhancement. J. Phys. Chem. C 2016, 120, 8900–8906. [Google Scholar] [CrossRef]
- Yao, M.; Shen, P.; Liu, Y.; Chen, B.; Guo, W.; Ruan, S.; Shen, L. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance. ACS Appl. Mater. Interfaces 2016, 8, 6183–6189. [Google Scholar] [CrossRef]
- Choi, M.; Kang, G.; Shin, D.; Barange, N.; Lee, C.-W.; Ko, D.-H.; Kim, K. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 12997–13008. [Google Scholar] [CrossRef]
- Yao, K.; Jiao, H.; Xu, Y.-X.; He, Q.; Li, F.; Wang, X. Nano-bio hybrids of plasmonic metals/photosynthetic proteins for broad-band light absorption enhancement in organic solar cells. J. Mater. Chem. A 2016, 4, 13400–13406. [Google Scholar] [CrossRef]
- Nagamani, S.; Kumarasamy, G.; Song, M.; Kim, C.S.; Kim, D.-H.; Ryu, S.Y.; Kang, J.-W.; Jin, S.-H. Optical absorption and electrical properties of enhanced efficiency in organic solar cells as interfacial layer with Au NPs. Synth. Met. 2016, 217, 117–122. [Google Scholar] [CrossRef]
- Yang, Y.; Qing, J.; Ou, J.; Lin, X.; Yuan, Z.; Yu, D.; Zhou, X.; Chen, X. Rational design of metallic nanowire-based plasmonic architectures for efficient inverted polymer solar cells. Sol. Energy 2015, 122, 231–238. [Google Scholar] [CrossRef]
- Ali, A.; Said, D.; Khayyat, M.; Boustimi, M.; Seoudi, R. Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. Results Phys. 2020, 16, 102819. [Google Scholar] [CrossRef]
- Ali, A.; Kang, J.H.; Seo, J.H.; Walker, B. Effect of Plasmonic Ag Nanoparticles on the Performance of Inverted Perovskite Solar Cells. Adv. Eng. Mater. 2020, 22. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tien, C.-H.; Lee, K.-L.; Kao, Y.-T. Efficiency Improvement of MAPbI3 Perovskite Solar Cells Based on a CsPbBr3 Quantum Dot/Au Nanoparticle Composite Plasmonic Light-Harvesting Layer. Energies 2020, 13, 1471. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.M.; Tatsuma, T. Photocurrent Enhancement of Perovskite Solar Cells at the Absorption Edge by Electrode-Coupled Plasmons of Silver Nanocubes. J. Phys. Chem. C 2017, 121, 11693–11699. [Google Scholar] [CrossRef]
- Mohsen, A.A.; Zahran, M.; Habib, S.E.D.; Allam, N.K. Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef] [Green Version]
- Saliba, M.; Zhang, W.; Burlakov, V.M.; Stranks, S.D.; Sun, Y.; Ball, J.M.; Johnston, M.B.; Goriely, A.; Wiesner, U.; Snaith, H.J. Plasmonic-Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2015, 25, 5038–5046. [Google Scholar] [CrossRef]
- Lu, Z.; Pan, X.; Ma, Y.; Li, Y.; Zheng, L.; Zhang, D.; Xu, Q.; Chen, Z.; Wang, S.; Qu, B.; et al. Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Adv. 2015, 5, 11175–11179. [Google Scholar] [CrossRef]
- Liu, S.; Liang, L.; Meng, L.; Tian, X.; Zhang, Z.; Yu, Y.; Lan, Z.; Wu, J.; Zhang, J.; Gao, P. Synergy of Plasmonic Silver Nanorod and Water for Enhanced Planar Perovskite Photovoltaic Devices. Sol. RRL 2019, 4. [Google Scholar] [CrossRef]
- Fan, R.; Wang, L.; Chen, Y.; Zheng, G.; Li, L.; Li, Z.; Zhou, H. Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 12034–12042. [Google Scholar] [CrossRef]
- Ghosh, J.; Giri, P.K. Effect of plasmonic metal nanoparticles on the performance of air processed inverted perovskite solar cells. AIP Conf. Proc. 2019, 2082, 050004. [Google Scholar] [CrossRef]
- Hu, Z.; García-Martín, J.M.; Li, Y.; Billot, L.; Sun, B.; Fresno, F.; Garcia-Martin, A.; González, M.U.; Aigouy, L.; Chen, Z. TiO2 Nanocolumn Arrays for More Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 5979–5989. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhang, C.; Deng, X.; Zhu, H.; Li, Z.; Wang, Z.; Chen, X.; Huang, S. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 34821–34832. [Google Scholar] [CrossRef] [PubMed]
- Ginting, R.T.; Kaur, S.; Lim, D.-K.; Kim, J.-M.; Lee, J.H.; Lee, S.H.; Kang, J.-W. Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 36111–36118. [Google Scholar] [CrossRef]
- Irandoost, R.; Soleimani-Amiri, S. Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles. Optik 2019, 202, 163598. [Google Scholar] [CrossRef]
- Kesavan, A.V.; Rao, A.D.; Ramamurthy, P.C.; Kesavan, A.V.; Rao, A.D.; Ramamurthy, P.C. Tailoring optoelectronic properties of CH3NH3PbI3 perovskite photovoltaics using al nanoparticle modified PC61BM layer. Sol. Energy 2020, 201, 621–627. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Yang, Y.; Zhu, Y. Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles. Sol. Energy Mater. Sol. Cells 2020, 211, 110529. [Google Scholar] [CrossRef]
- Subhan, F.E.; Khan, A.D.; Hilal, F.E.; Khan, A.D.; Khan, S.D.; Ullah, R.; Imran, M.; Noman, M. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. RSC Adv. 2020, 10, 11836–11842. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Duan, W.; Toor, F. Efficiency Improvement of Planar Silicon Solar Cells Utilizing Localized Surface Plasmon Resonance of Silver Nanoparticles. In Proceedings of the IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1887–1891. [Google Scholar] [CrossRef]
- Ho, W.-J.; Lin, W.-C.; Liu, J.-J.; Syu, H.-J.; Lin, C.-F. Enhancing the Performance of Textured Silicon Solar Cells by Combining Up-Conversion with Plasmonic Scattering. Energies 2019, 12, 4119. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.D.; Rehman, Q.; Khan, A.D.; Subhan, F.E.; Noman, M.; Ahmed, S.; Khan, H.A. Broadband Solar Energy Absorption in Plasmonic Thin-Film Amorphous Silicon Solar Cell. Coatings 2019, 9, 638. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-J.; Chen, G.-Y.; Liu, J.-J. Enhancing Photovoltaic Performance of Plasmonic Silicon Solar Cells with ITO Nanoparticles Dispersed in SiO2 Anti-Reflective Layer. Materials 2019, 12, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koval, V.; Yakvmenko, Y.; Ivashchuk, A.; Dusheyko, M.; Fadieiev, M.; Didichenko, D.; Borodinova, T. Application of Au Nanoparticles for Silicon Heterojunction Solar Cells. In Proceedings of the 2018 IEEE 38th International conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 24–26 April 2018; pp. 186–190. [Google Scholar] [CrossRef]
- Dhar, S.; Mandal, S.; Mitra, S.; Ghosh, H.; Mukherjee, S.; Banerjee, C.; Saha, H.; Barua, A.K. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface. J. Phys. D Appl. Phys. 2017, 50, 495110. [Google Scholar] [CrossRef]
- Knight, M.W.; van de Groep, J.; Bronsveld, P.C.; Sinke, W.C.; Polman, A. Soft imprinted Ag nanowire hybrid electrodes on silicon heterojunction solar cells. Nano Energy 2016, 30, 398–406. [Google Scholar] [CrossRef]
- Parashar, P.K.; Komarala, V.K. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Sci. Rep. 2017, 7, 12520. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, N.; Gerasimov, V.; Ershov, A.; Karpov, S.; Polyutov, S. Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt. Mater. 2017, 72, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-J.; Lee, Y.-Y.; Lin, C.-H.; Yeh, C.-W. Performance enhancement of plasmonics silicon solar cells using Al2O3/In NPs/TiO2 antireflective surface coating. Appl. Surf. Sci. 2015, 354, 100–105. [Google Scholar] [CrossRef]
- Raja, W.; Bozzola, A.; Zilio, P.; Miele, E.; Panaro, S.; Wang, H.; Toma, A.; Alabastri, A.; De Angelis, F.; Zaccaria, R.P. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Sci. Rep. 2016, 6, 24539. [Google Scholar] [CrossRef] [Green Version]
- Shokeen, P.; Jain, A.; Kapoor, A. Plasmonic ZnO/p-silicon heterojunction solar cell. Opt. Mater. 2017, 67, 32–37. [Google Scholar] [CrossRef]
- Ho, W.-J.; Lee, Y.-Y.; Su, S.-Y. External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles. Nanoscale Res. Lett. 2014, 9, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.; Alnuaimi, A.; Battal, E.; Okyay, A.K.; Nayfeh, A. Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells. Sol. Energy 2014, 103, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Shao, W.; Zhou, Y.; Wang, H.; Liu, X.; Xu, X. Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method. Appl. Phys. Lett. 2013, 103, 203904. [Google Scholar] [CrossRef]
- Yang, Y.; Pillai, S.; Mehrvarz, H.; Kampwerth, H.; Ho-Baillie, A.; Green, M. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. Energy Mater. Sol. Cells 2012, 101, 217–226. [Google Scholar] [CrossRef]
- Beck, F.J.; Mokkapati, S.; Polman, A.; Catchpole, K.R. Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl. Phys. Lett. 2010, 96, 33113. [Google Scholar] [CrossRef] [Green Version]
- Fahim, N.F.; Jia, B.; Shi, Z.; Gu, M. Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells. Opt. Express 2012, 20, A694–A705. [Google Scholar] [CrossRef]
- Tong, C.; Yun, J.; Song, H.; Gan, Q.; Anderson, W.A. Plasmonic-enhanced Si Schottky barrier solar cells. Sol. Energy Mater. Sol. Cells 2014, 120, 591–595. [Google Scholar] [CrossRef]
- Ramadan, R.; Manso-Silván, M.; Martín-Palma, R.J. Hybrid porous silicon/silver nanostructures for the development of enhanced photovoltaic devices. J. Mater. Sci. 2020, 55, 5458–5470. [Google Scholar] [CrossRef]
- Ferry, V.E.; Verschuuren, M.A.; Li, H.B.T.; Schropp, R.E.; Atwater, H.A.; Polman, A. Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 2009, 95, 183503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Digdaya, I.; Santbergen, R.; van Swaaij, R.; Bronsveld, P.; Zeman, M.; van Roosmalen, J.; Weeber, A. Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol. Energy Mater. Sol. Cells 2013, 117, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hylton, N.; Giannini, V.; Lee, K.-H.; Ekins-Daukes, N.; Maier, S. Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt. Express 2011, 19, A888–A896. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, P.; Susha, A.S.; Sablon, K.A.; Chen, H.; Zhou, Z.; Li, H.; Ji, H.; Niu, X.; Govorov, A.O.; et al. Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy 2015, 13, 827–835. [Google Scholar] [CrossRef]
- Luo, L.-B.; Xie, C.; Wang, X.-H.; Yu, Y.-Q.; Wu, C.-Y.; Hu, H.; Zhou, K.-Y.; Zhang, X.-W.; Jie, J. Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 2014, 9, 112–120. [Google Scholar] [CrossRef]
- Farhat, M.; Kais, S.; Alharbi, F. Plasmonically Enhanced Schottky Photovoltaic Devices. Sci. Rep. 2017, 7, 14253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Gu, J.H.; Sha, W.E.I.; Chen, R.S. Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures. Opt. Express 2018, 26, 25037–25046. [Google Scholar] [CrossRef] [PubMed]
- Forestiere, C.; Iadarola, G.; Rubinacci, G.; Tamburrino, A.; Negro, L.D.; Miano, G. Surface integral formulations for the design of plasmonic nanostructures. J. Opt. Soc. Am. A 2012, 29, 2314–2327. [Google Scholar] [CrossRef] [Green Version]
- Dewan, R.; Jovanov, V.; Hamraz, S.; Knipp, D. Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis. Sci. Rep. 2014, 4, srep06029. [Google Scholar] [CrossRef] [Green Version]
- COMSOL. COMSOL Multiphysics® v. 5.4; COMSOL: Burlington, MA, USA, 2019. [Google Scholar]
- Lumerical Inc. Lumerical. Available online: https://www.lumerical.com/products (accessed on 25 January 2021).
- Michael, S.; Bates, A.; Green, M. Silvaco ATLAS as a Solar Cell Modeling Tool. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialist Conference, Lake Buena Vista, FL, USA, 3–7 January 2005. [Google Scholar] [CrossRef]
- Hohenester, U.; Trügler, A. MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 2012, 183, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.; Johnson, S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Wiecha, P.R. pyGDM—A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures. Comput. Phys. Commun. 2018, 233, 167–192. [Google Scholar] [CrossRef] [Green Version]
- Burgelman, M.; Decock, K.; Khelifi, S.; Abass, A. Advanced electrical simulation of thin film solar cells. Thin Solid Films 2013, 535, 296–301. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, J.; Wei, J.; Li, Y.; Lv, M.; Yang, S.; Zhang, B.; Yao, J.; Dai, S. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 2014, 104, 253508. [Google Scholar] [CrossRef]
- Clugston, D.; Basore, P. PC1D version 5: 32-bit solar cell modeling on personal computers. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September—3 October 1997; pp. 207–210. [Google Scholar] [CrossRef]
- Fell, A. A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations. IEEE Trans. Electron Devices 2012, 60, 733–738. [Google Scholar] [CrossRef]
- Baloch, A.A.B.; Aly, S.P.; Hossain, M.I.; El-Mellouhi, F.; Tabet, N.; Alharbi, F. Full space device optimization for solar cells. Sci. Rep. 2017, 7, 11984. [Google Scholar] [CrossRef] [Green Version]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via Deep Learning. Light. Sci. Appl. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Yao, K.; Unni, R.; Zheng, Y. Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale. Nanophotonics 2019, 8, 339–366. [Google Scholar] [CrossRef]
- Jafar-Zanjani, S.; Inampudi, S.; Mosallaei, H. Adaptive Genetic Algorithm for Optical Metasurfaces Design. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Gallinet, B.; Butet, J.; Martin, O.J.F. Numerical methods for nanophotonics: Standard problems and future challenges. Laser Photon. Rev. 2015, 9, 577–603. [Google Scholar] [CrossRef]
- Aïssa, B.; A El Khakani, M. The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors. Nanotechnology 2009, 20, 175203. [Google Scholar] [CrossRef]
- Memmi, H.; Benson, O.; Sadofev, S.; Kalusniak, S. Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations. Phys. Rev. Lett. 2017, 118, 126802. [Google Scholar] [CrossRef]
- Zhou, Y.; Scuri, G.; Wild, D.; High, A.A.; Dibos, A.; Jauregui, L.A.; Shu, C.; De Greve, K.; Pistunova, K.; Joe, A.; et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurgin, J.B. How to face the loss in plasmonics and metamaterials. arXiv 2014, arXiv:1411.6577. [Google Scholar]
- Gu, M.; Ouyang, Z.; Jia, B.; Stokes, N.; Chen, X.; Fahim, N.; Li, X.; Ventura, M.J.; Shi, Z. Nanoplasmonics: A frontier of photovoltaic solar cells. Nanophotonics 2012, 1, 235–248. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Farhat, M.; Baloch, A.A.B.; Rashkeev, S.N.; Tabet, N.; Kais, S.; Alharbi, F.H. Bifacial Schottky-Junction Plasmonic-Based Solar Cell. Energy Technol. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Na Quan, L.; Chung, K.; Kim, D.H. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar] [CrossRef]
- Lim, M.; Song, J.; Lee, S.S.; Lee, B.J. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Whang, S.-J.; Lee, S.; Chi, D.-Z.; Yang, W.-F.; Cho, B.-J.; Liew, Y.-F.; Kwong, D.-L. B-doping of vapour–liquid–solid grown Au-catalysed and Al-catalysed Si nanowires: Effects of B2H6gas during Si nanowire growth and B-doping by a post-synthesisin situplasma process. Nanotechnology 2007, 18. [Google Scholar] [CrossRef]
- de Abajo, F.J.G.; Kociak, M. Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Phys. Rev. Lett. 2008, 100, 106804. [Google Scholar] [CrossRef] [Green Version]
Ref. | Structure | Spatial Arrangement | Jsc (mA/cm2) | Jsc Enhancement (%) | Efficiency (ɳ %) | Efficiency Increase (%) | Mechanism |
---|---|---|---|---|---|---|---|
[13] | ITO/PEDOT:PSS/P3HT: PCBM/embedded Ag (NPs)/Al | Embedded in active layer | 8.67 to 10.64 | 18.2 | 3.19 to 4.21 | ~23 | LSPR and light scattering |
[189] | ITO/PEDOT:PSS/BHJ active layer with Ag (nanocluster, 40 nm)/TiOx/Al | Ag nanoclusters embedded in active layer | 10.79 to 11.61 | 7.6 | 6.3 to 7.1 | 11.3 | Improved absorption by light scattering, increasing the optical length |
[140] | ITO/PEDOT:PSS (30 nm)/ P3HT:PCBM (220 nm):Ag (sphere and prism)/Ca (80 nm)/Al (100 nm) | Ag NPs and nanoprisms embedded in active layer | 10.61 to 8.99 | 18 | 3.6 to 4.3 | 16.3 | Broadband resonance due to excitation of versatile plasmonic resonances |
[190] | ITO/PEDOT:P:SS/BHJ active layer with Au NPs (70 nm) (truncated octahedraon)/TiOx/Al | Embedded in active layer | 10.65 to 11.16 | 4.5 | 4.54 to 6.45 | 30 | Light absorption caused by the light scattering of Au NPs in the active layer |
[191] | ITO/PEDOT:PSS/PTB7:PC70BM/Au nanospheres (30 nm)/TiOx/Al | Au nanospheres embedded into active layer | 15.31 to 15.70 | 2.5 | 7.02 | 6.7 | Increased light absorption by light scattering of embedded Au nanospheres |
[192] | ITO/rGO:ZnO/P3HT:PCBM:Ag/Au (NPs or NRs)/MoO3/Ag | Embedded Ag/Au NPs and NRs | 10.99 to 12.21 | 10 | 3.77 to 4.85 | ~28 | LSPR and light scattering |
[193] | PCDTBT:PC71BM: WS2-Au | Embedded in active layer | 10.6 to 12.3 | 14 | 5.6 to 6.3 | ~13 | LSPR |
[194] | ITO/PEDOT:PSS/PBDT-TS1:PC71BM/Au nanostars in active and PEDOT/Ca (ZnO)/Al | Embedded in active and HTL | 18.37 to 19.24 | 5 | 9.97 to 10.50 | ~5 | Plasmonic asymmetric modes of Au NSs transferred the optical power in ETL to active layer and improved the active layer absorption |
[195] | PEDOT/Au nanorods (NRs) @ SiO2/PTB7:PC71BM | Sandwiched between CTL and active layer | 16.5 to 21.2 | 22 | 7.52 to 9.55 | ~28 | Scattering, LSPR |
[10] | PCDTBT:PC71BM/Au NRs in TiOx | Incorporated Au NRs in back ETL | 10.87 to 12.03 | 9.6 | 5.96 to 6.75 | ~13 | Backward scattering |
PTB7:PC71BM/Au NRs in TiOx | Incorporated Au NRs in back ETL | 16.27 to 17.17 | 5.2 | 7.43 to 8.01 | ~8 | Backward scattering | |
[196] | PTB7:PC71BM/ZnO@carbon nanotubes (CNT)-Au (ETL) | Embedded ZnO@CNT-Au as ETL | 16.18 to 16.81 | 4 | 7.0 to 7.9 | ~13 | Forward scattering |
[197] | PCDTBT:PC71BM/ZnO (ETL) | Embedded Au arrows in ETL | 14.70 to 17.40 | 15.5 | 6.14 to 7.82 | ~27 | Forward scattering, LSPR |
[198] | PBDTTT-CF:PC71BM/ZnO (ETL) | Embedded Au NPs in ETL | 14.49 to 15.81 | 8.3 | 6.67 to 7.86 | ~18 | Forward scattering, LSPR |
[199,200] | P3HT:ICBA/WO3 (HTL) | Embedded Cu NPs in rear HTL | 8.71 to 11.79 | 26 | 4.65 to 6.38 | ~37 | Backward scattering |
[201] | P3HT:ICBA/WO3 (HTL) | Embedded Ag–Au bimetallic NPs in rear HTL | 7.91 to 11.01 | 28 | 4.57 to 6.55 | ~43 | Backward scattering |
[87] | PTB7:PCBM/PEDOT/Ag nanodot array/ITO | Sandwiched between HTL and anode | 17.43 to 23.26 | 25 | 7.70 to 10.72 | ~39 | LSPR, forward scattering |
[12] | Ag networks/ZnO/PCDTBT:PCBM/MoO3/Ag oblate NPs/anode | Embedded Ag oblate NP array between HTL and anode | 9.32 to 11.37 | 18 | 5.22 to 6.01 | ~13 | Hybridization of LSPR and plasmonics gap |
[202] | PTB7:PC71BM/ZnO/Au NPs/ITO | Incorporated Au NPs between ETL and cathode | 15.53 to 15.69 | 1 | 6.75 to 7.27 | ~7 | MDM absorber |
[203] | PTB7:PC71BM/nano–biohybrid/ZnO/ ITO | Incorporated Ag prisms-LHCII between the active layer and ETL | 16.01 to 17.99 | 11 | 9.03 to 10.57 | ~17 | LSPR |
[204] | PBDTTT-C:PC60BM/Au NPs/PEDOT/ITO | Incorporated Au NPs ~15 nm between the active and HTL | 10.62 to 11.74 | 10 | 4.78 to 5.52 | ~15 | LSPR |
[205] | ITO/ZnO/P3HT:PC61BM/MoO3/Al | Reference Ag NWs between cathode and ETL Ag NWs between ETL and active layer | 8.13 to 9.87 | 17.6 | 3.10 to 4.05 | ~23 | LSPR |
[41] | ITO/ZAZ/P3HT:PC61BM/PEDOT:PSS/Ag | Applied ZnO/AgNWs/ZnO (ZAZ) as transparent electrode | 9.75 to 11.6 | 16 | 3.16 to 3.53 | ~12 | Higher transmission above 450 nm |
[39] | P3HT:PC61BM/PEDOT/ Au (flat or grating) | Applied Au grating as rear electrode | 6.13 to 6.83 | 10.2 | 3.03 to 3.53 | ~16 | SPP, photonic waveguide mode |
[206] | ITO/PEDOT:PSS:Ag Nanoparticles (NPs) (57 nm)/CuPc/C60 | Embedded Ag NPs into photoconductor transport layer | 4.01 to 5.01 | 20 | 0.663 to 0.925 | ~28 | LSPR |
Ref. | Structure | Jsc (mA/cm2) | Jsc Enhancement (%) | Efficiency (ɳ %) | Efficiency Increase (%) | Mechanism |
---|---|---|---|---|---|---|
[207] | ITO/PEDOT:PSS/MAPbI3/Ag NPs (79 nm)/PCBM/LiF/Al | 19.89 to 24.41 | 18.5 | 11.63 to 13.46 | 13.6% | Improved Jsc and overall device performance due to enhanced absorption via LSPR and light optical path length increase. |
[208] | ITO/Au NPs (120 nm):QD-CsPbBr3/PEDOT:PSS/MAPbI3/C60/Ag | 20.6 to 22.5 | 9 | 8.53 to 10.9 | 27.8 | LSPR excitation and light scatterring. |
[209] | ITO/PEDOT:PSS/MAPbI3/PCBM/Ag (nanocubes)/BCP/Ag | 19.5 to 21.4 | 9 | 11.9 to 13.3 | 10.5 | Plasmonic Ag nanocubes coupling with Ag back electrode. |
[210] | ITO/TiO2/ZrN/SiO2 NPs (75 nm core/40 nm shell)/MASnI3/Spiro-OMeTAD/Au | 27 to 40.3 | 33 | 12.9 to 20 | 35.5 | Attributed to the enhancement in the plasmonic surface plasmon directivity by the dielectric shell. |
ITO (150 nm)/TiO2 (40 nm)/TiN NPs (100 nm)/MASnI3 (350 nm)/Spiro-OMeTAD (200 nm)/Au (100 nm) | 27 to 36.91 | 27 | 12.9 to 18.2 | 29 | Absorption enhancement due to NP plasmonic effect acting as wave guide to direct sunlight by LSPR, forming SPPs at the air–TiN interface. | |
ITO (150 nm)/TiO2 (40 nm)/ZrN NPs (100 nm)/MASnI3 (350 nm)/Spiro-OMeTAD (200 nm)/Au (100 nm) | 27 to 34.2 | 21 | 12.9 to 16.6 | 22.3 | Plasmonic resonance enhancement at NIR wavelengths. | |
[211] | FTO/TiO2 (50 nm)/Al2O3 (130 nm) with Au(80 nm)@SiO2 (8 nm) + MAPbI3/Spiro-OMeTAD/Ag | 14.76 to 16.91 | 13 | 10.7 to 11.4 | 6 | Enhanced photocurrent due to enhanced light absorption and plasmonic localized heating. |
[212] | FTO/Ag@TiO2/Al2O3 + MAPbI3/Spiro-OMeTAD/Ag | 17.3 to 20.2 | 14.35 | 11.4 to 13.5 | 16 | Photocurrent improvement due to highly polarizable metallic NPs. |
[213] | FTO/c-TiO2/m-TiO2/Au-Ag alloy NPs (popcorn-shaped)/MAPbI3/Spiro-OMeTAD/Ag | 15.51 to 16.46 | 6 | 8.9 to 10.3 | 15.7% | Plasmonic popcorn NPs led to faster charge transfer at TiO2–perovskite interface, resulting in increased PCE. |
[214] | FTO/TiO2/SnO2/CsFAMAPbI3Br3/Ag NR (buffer layer)Spiro-OMeTAD/Au | 21.08 to 22.18 | 5 | 18.50 to 20.29 | 9 | Ag NRs increased the absorption by the LSPR effect. |
[215] | ITO/TiO2/Au@TiO2 (NR)/MAPbI3/Spiro-OMeTAD/Au | 20.78 to 22.27 | 7 | 15.76 to 16.35 | 20.10 | Facilitated carrier transfer or separation in the presence of plasmonic NPs. |
[216] | FTO/PEDOT:PSS + Ag NPs/MAPbI3/PCBM/Al | 15.06 to 15.47 | 3 | 4.17 to 5.58 | 25.3 | Plasmons induced enhanced absorption and superior photogenerated carrier separation and transport via the Ag NPs in the perovskite active material. |
[217] | FTO/c-TiO2/TiO2 (nanocolumns, NC)/Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3/SpiroOMeTAD/Au | 19.27 to 20.19 | 4.6 | 15.31 to 16.38 | 6.5 | TiO2 NCs improved the performance of perovskite halide solar cells in terms of charge transport, light harvesting, and stability. |
[218] | FTO/c-TiO2/Au@TiO2 NPs embedded in p-TiO2/MAPbI3/Spiro-OMeTAD/Ag | 17.40 to 23.12 | 25 | 12.59 to 18.24 | 44 | Improvement due to exciton generation rate, enhanced exciton dissociation probability, and efficient carrier transfer/collection induced by the LSPR effect. |
[219] | ITO/ZnO/MAPbI3/Au (nanostars)/Spiro-OMeTAD/Ag | 17.43 to 18.21 | 4.3 | 11.98 to 13.97 | 14 | Absorption improved by Au NSs because of SPR and backscattering effects. |
[220] | FTO/ZnO/ZnO NR/MAPbI3/spiro-OMeTAD/Au | 18.07 to 20.56 | 12.1 | 14.51 to 16.77 | ~14 | LSPR. |
[208] | 120AuNPs:quantum dots (QD)-CsPbBr3/PEDOT:PSS/MAPbI3 | 20.6 to 22.5 | 8.4 | 8.53 to 10.9 | ~27.8 | LSPR excitation by resonance interaction. |
[221] | ITO/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al | 16.70 18.15 to | 8 | 10.54 to 11.74 | ~10.22 | Subwavelength antenna due to LSPR excitation. |
Ref. | Silicon Solar Cell | Plasmonic Type | Position | Achievements |
---|---|---|---|---|
[222] | Amorphous silicon (a-Si) thin-film solar cell | SiO2 nanoparticles (70 nm) | Front | Increase in current short-circuit density of 21%; increase in conversion efficiency of 18%. |
Ag hemispheres (110 nm) | Rear | |||
[223] | a-Si solar cell | Double sided plasmonic bimetallic (Al–Cu) nanograting Al (60 nm width) Cu (50 nm width) | Front | Improvement in absorption of 40% and in Jsc of 22.30 mA/cm2 (compared with 16.46 mA/cm2 without grating). |
[162] | Crystalline Si solar cell with TiO2 as ARC | Ag NPs (90 nm) | Front | Conversion efficiency increased from 9.53% to 16.04%, which was attributed to plasmonic effect. |
[224] | Planar silicon solar cells with Al2O3 layers | Random-sized Ag NPs (20–140 nm) | Front | EQE increased by 19.2% at 700 nm, and PCE by 20%, compared with the reference Si solar cell without NPs. |
[225] | Textured silicon solar cells with up-conversion and plasmonic scattering | Indium NPs (7 nm) in SiO2 layer | Front | Conversion efficiency increased from 14.45% (reference cell) to 15.43%. |
[226] | Thin-film a-Si | Ring-shaped Ti nanoparticles | Front | Absorption improved by 40% from 300 to 700 nm compared with the reference. |
[227] | Aluminum back surface field (BSF) Si solar cell | ITO nanoparticles scattered in SiO2 layer (10–90 nm) | Front | Efficiency improved by 33.27%. |
[228] | Silicon heterojunction solar cells | Au nanoparticles (90 nm) | Front | Increase in short-circuit current of 15%. |
[229] | a-Si/c-Si heterojunction solar cells | ITO nanoparticles (75 nm) | Rear | Increase in current from 32.8 mA/cm2 to 35.1 mA/cm2. Increase in efficiency from 13.74% to 15.22%. |
[230] | Silicon heterojunction solar cells | Ag nanowire contacts (4 µm pitch) | Front | Increase in power conversion efficiency from 15.0% to 16.0%. |
[231] | Textured silicon solar cell | Ag–Al nanoparticles in SiON matrix (average~115 nm) | Front | Increase in photocurrent from 26.27 mA/cm2 to 34.61 mA/cm2 |
[232] | Crystalline silicon solar cells | TiN nanoparticles (100 nm) | Front | Increase in absorption of 20%. |
[233] | Aluminum BSF Si solar cell | Al2O3/In NPs (17.7 nm)/TiO2 antireflective coating | Front | Conversion efficiency increased from 10.96% to 16.93%. |
[234] | Microcrystalline-Si solar cells | Plasmonic nanoshells of silica and gold (shell thickness 30 nm and core radius 50 nm) | Embedded in Si active layer | Increase in photocurrent of about 21%. |
[235] | ZnO/p-silicon heterojunction cell | Silver nanoparticles (<10 nm) | Front | Jsc increased from 2.05 to 11.67 mA/cm2. |
[236] | Thin Si solar cells | In NPs (17.7 nm) | Front | Short-circuit current improved by 31.88% and conversion efficiency improved by 32.72%. |
Ag NPs (100 nm) | Rear | |||
[237] | a-Si p–i–n solar cells | Au NPs (200 nm) | Front | Current density increased from 9.34 to 10.1 mA/cm2, and efficiency increased from 4.28% to 5.01%. |
[238] | Microcrystalline silicon solar cell | Ag NPs (100 nm) | Front | Efficiency improved by 2.8%. |
[239] | Passivated emitter rear totally-diffused (PERT) | Ag NPs (28 nm) + Si02 and rear metal reflector | Rear | EQE improved by 400%, and Jsc by 16%. |
[240] | Bifacial crystalline Si solar cells | Ag NPs (220 nm) | Front and Rear | EQE improved by 700%. |
[145] | Passivated emitter rear locally-diffused (PERL) | Ag NPs (12 nm) | Front | EQE improved by 700%, and Jsc by 19%. |
[241] | Planar crystalline silicon solar cells | Ag NPs (62 nm) | Front | Increase in efficiency by 35.2%, from 11.2% to 15.2%. |
[242] | Si-Schottky barrier solar cells | Ag NP (19.7 nm) | Front | Jsc increased from 13.7 to 19.74 mA/cm2 (i.e., by 43.7%). |
[243] | Si-based metal–insulator–semiconductor (MIS) Schottky junction solar cells | Nanoporous Si | Front | Jsc increased from 0.43 to 5.52 mA/cm2 (i.e., by 92.2%) due to reflection reduction and the passivation provided by nanoporous Si. |
[243] | Si-based metal–insulator–semiconductor (MIS) Schottky junction solar cells | Nanoporous Si + Ag NPs | Front | Jsc increased from 0.43 to 8.07 mA/cm2 (i.e., by 94.6%) due to the small size of the AgNPs, SPR effects, and the improved electrical conduction of the nanoPS layers. |
[185] | p–i–n a-Si:H solar Cell | SiO2 nanocone | Front | Jsc increased from 11.4 to 17.5 mA/cm2 (i.e., by 34.5%) due to suppression of reflection by nanodomes, which was due to the formation of a graded refractive index profile. |
[244] | n–i–p a-Si:H Solar Cell | Ag back contact with patterned holes (225 nm) | Rear | Jsc increased from 9.86 to 12.5 mA/cm2 (i.e., by 26%) due to the periodic nanostructures on the back contact of an n–i–p a-Si:H solar cell (i.e., enhancing the red-response of the device). |
[245] | Heterojunction silicon solar cell | SiOx (70 nm) as ARC | Front | Jsc increased from 34.1 to 40.5 mA/cm2 (i.e., by 16%) due to the double-layer AR coating instead of single-layer. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; El-Mellouhi, F.; Mitra, A.; Aïssa, B. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. Nanomaterials 2022, 12, 788. https://doi.org/10.3390/nano12050788
Ali A, El-Mellouhi F, Mitra A, Aïssa B. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. Nanomaterials. 2022; 12(5):788. https://doi.org/10.3390/nano12050788
Chicago/Turabian StyleAli, Adnan, Fedwa El-Mellouhi, Anirban Mitra, and Brahim Aïssa. 2022. "Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells" Nanomaterials 12, no. 5: 788. https://doi.org/10.3390/nano12050788
APA StyleAli, A., El-Mellouhi, F., Mitra, A., & Aïssa, B. (2022). Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells. Nanomaterials, 12(5), 788. https://doi.org/10.3390/nano12050788