Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. One-Step Synthesis of the SD-AC
2.2. Characterizations of SD-AC
2.3. Electrochemical Measurements
3. Results
3.1. Physical Characterization of the SD-AC
3.2. Electrochemical Properties of the SD-AC in a Three-Electrode Test
3.3. Electrochemical Properties of the SD-AC-Based Symmetric Supercapacitor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimena, C.G.; Alain, C.; Vanessa, F. Energy storage in supercapacitors: Focus on tannin-derived carbon electrodes. Front. Mater. 2020, 7, 217. [Google Scholar]
- Yu, P.; Wei, T.; Wu, F.F.; Zhang, C.; Luo, Y.H.; Liu, H.; Wang, Z.G. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review. Rare Metals 2020, 39, 1019–1033. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, K.; Li, S.J.; Li, M.; Li, J.X.; Ren, K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 2018, 10, 2427–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.Y.; Liang, Y.R.; Hu, H.; Liu, S.M.; Cai, Y.J.; Dong, H.W.; Zheng, M.T.; Xiao, Y.; Liu, Y.L. Ultrahigh-surface-area hierarchical porous carbon from chitosan: Acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 2017, 5, 24775–24781. [Google Scholar] [CrossRef]
- Wu, X.; Yao, S.Y. Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 2017, 42, 143–150. [Google Scholar] [CrossRef]
- Guo, C.X.; Yilmaz, G.; Chen, S.C.; Chen, S.F.; Lu, X.M. Hierarchical nanocomposite composed of layered V2O5/PEDOT/MnO2 nanosheets for high-performance asymmetric supercapacitors. Nano Energy 2015, 12, 76–87. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Babak, S.A.; Tan, X.H.; Xu, Z.W.; Wang, H.L.; Brian, C.O.; Chris, M.B.; Holt, D.M. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, N.; Lei, S.W.; Yan, R.; Tian, X.D.; Wang, J.Z.; Song, Y.; Xu, D.F.; Guo, Q.G.; Liu, L. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Han, X.R.; Guo, X.T.; Xu, M.J.; Pang, H.; Ma, Y.W. Clean utilization of palm kernel shell: Sustainable and naturally heteroatom-doped porous activated carbon for lithium-sulfur batteries. Rare Metals 2020, 39, 1099–1106. [Google Scholar] [CrossRef]
- Ramachandran, K.; Sherif, A.E.; Subburam, G.; Cui, Y.X.; Li, S.; Li, J.; Wang, J.; Liu, X.H.; Lian, J.B.; Li, H.M. Optimizing the microstructure of carbon nano-honeycombs for high-energy sodium-ion capacitor. Electrochim. Acta 2022, 403, 139675. [Google Scholar] [CrossRef]
- He, X.J.; Li, X.J.; Wang, X.T.; Zhao, N.; Yu, M.X.; Wu, M.B. Efficient preparation of porous carbons from coal tar pitch for high performance super capacitors. Carbon 2015, 85, 448. [Google Scholar] [CrossRef]
- Wei, B.; Wei, T.T.; Xie, C.F.; Li, K.; Hang, F.X. Promising activated carbon derived from sugarcane tip as electrode material for high-performance supercapacitors. RSC Adv. 2021, 11, 28138–28147. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Lin, L.Y. Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. J. Taiwan Inst. Chem. E 2019, 101, 177–185. [Google Scholar] [CrossRef]
- Liu, J.J.; Wu, Q.; Zhu, Q.Z.; Guan, Y.B.; Xu, B. Hierarchical porous carbon prepared from mulberry leaves for supercapacitors. Ionics 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Tian, Y.X.; Xiao, C.Y.; Yin, J.; Zhang, W.L.; Bao, J.P.; Lin, H.B.; Lu, H.Y. Hierarchical porous carbon prepared through sustainable CuCl2 activation of rice husk for high-performance supercapacitors. Chem. Sel. 2019, 4, 2314–2319. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, Q.; Yuan, Y.; Luo, S.H.; Zhang, Y.H.; Liu, X. Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Metals 2021, 40, 3166–3174. [Google Scholar] [CrossRef]
- Sara, P.R.; Oscar, P.; Maria, T.; Izquierdo, C.S.; Po, S.P.; Alain, C.; Juan, M.; Fierro, V. Upgrading of pine tannin biochars as electrochemical capacitor electrodes. J. Colloid Interface Sci. 2021, 601, 863–876. [Google Scholar]
- Ma, Y.; Yin, J.W.; Liang, H.Q.; Yao, D.X.; Xia, Y.F.; Zuo, K.H.; Zeng, Y.P. A two step approach for making super capacitors from waste wood. J. Clean. Prod. 2021, 279, 123–786. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Chen, M.M.; Li, Q.; Yuan, C.; Wang, C.Y. A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 2018, 129, 695–701. [Google Scholar] [CrossRef]
- Rawal, A.; Joseph, S.D.; Hook, J.M.; Chia, C.H.; Munroe, P.R.; Donne, S.; Lin, Y.; Phelan, D.; Mitchell, D.R.G.; Pace, B.; et al. Mineral-biochar composites: Molecular structure and porosity. Environ. Sci. Technol. 2016, 50, 7706–7714. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.T.; Cheng, J.K.; Ma, J.; Yang, C.L.; Yao, M.Q.; Liu, F.; Deng, M.; Wang, X.D.; Ren, Y. Facile synthesis of microporous carbons from biomass waste as high performance supports for dehydrogenation of formic acid. Nanomaterials 2021, 11, 3028. [Google Scholar] [CrossRef] [PubMed]
- Jayaramulu, K.; Dubal, D.P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K.K.R.; Zboril, R.; Gómez-Romero, P.; Fischer, R.A. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 2018, 30, 1705789. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.Q.; Li, G.C.; Li, X.H.; Guo, H.J.; Wang, Z.X.; Yan, G.C.; Wang, J.X. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Metals 2020, 39, 1364–1373. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.W.; Tan, X.H.; Wang, H.L.; Chris, M.B.; Holt, T.S.; Brian, C.O.; David, M. Mesoporous nitrogen-rich carbons derived from protein for ultrahigh capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878. [Google Scholar] [CrossRef]
- Kim, H.; Cho, J.y.; Jang, S.Y.; Song, Y.W. Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 2011, 98, 831. [Google Scholar] [CrossRef]
- Wang, H.L.; Yu, W.H.; Shi, J.; Mao, N.; Chen, S.G.; Liu, W. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim. Acta 2016, 188, 103–110. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Hredzák, S.; Lovás, M.; Danková, Z.; Kováčová, M.; Briančin, J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 2017, 143, 643–653. [Google Scholar] [CrossRef]
- Bardestani, R.; Kaliaguine, S. Steam activation and mild air oxidation of vacuum pyrolysis biochar. Biomass Bioenergy 2018, 108, 101–112. [Google Scholar] [CrossRef]
- Li, J.X.; Han, K.H.; Li, S.J. Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 8480–8491. [Google Scholar] [CrossRef]
- Olejniczak, A.; Lezanska, M.; Wloch, J.; Kucinska, A.; Lukaszewicz, J.P. Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 2013, 1, 8961–8967. [Google Scholar] [CrossRef]
- Wang, L.L.; Wang, J.; Ng, D.H.; Li, S.; Zou, B.B.; Cui, Y.X.; Liu, X.H.; Sherif, A.E.; Qiu, J.X.; Lian, J.B. Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage. Chem. Commun. 2021, 57, 9610–9613. [Google Scholar] [CrossRef]
- Mei, B.A.; Munteshari, O.; Lau, J.; Dunn, B. Laurent pilon physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective–guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Ho, C.; Raistrick, I.D.; Huggins, R.A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343–350. [Google Scholar] [CrossRef]
- Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3). Electrochim. Acta 2003, 48, 2691–2703. [Google Scholar] [CrossRef]
- Wang, D.B.; Geng, Z.; Li, B.; Zhang, C.M. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochim. Acta 2015, 173, 377–384. [Google Scholar] [CrossRef]
- Zhang, W.L.; Lin, N.; Liu, D.B.; Xu, J.H.; Sha, J.X.; Yin, J.; Tan, X.B.; Yang, H.P.; Lu, H.Y.; Lin, H.B. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Sudhan, N.; Subramani, K.; Karnan, M.; Ilayaraja, N.; Sathish, M. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels 2016, 31, 977–985. [Google Scholar] [CrossRef]
- Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A.A.; Momodu, D.Y.; Dangbegnon, J.K. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv. 2016, 6, 1800–1809. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Lang, J.; Xu, S.; Wang, X. Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv. 2014, 4, 54662–54667. [Google Scholar] [CrossRef]
- Qu, S.; Wan, J.; Dai, C.; Jin, T.; Ma, F. Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloys Compd. 2018, 751, 107–116. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, Z.; Chen, M.; Wang, C. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J. Power Sources 2014, 252, 235–243. [Google Scholar] [CrossRef]
- Yan, X.; Jia, Y.; Zhuang, L.; Zhang, L.; Wang, K.; Yao, X. Defective carbons derived from macadamia nut shell biomass for efficient oxygen reduction and supercapacitors. ChemElectroChem 2018, 5, 1874–1879. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Zhang, N.; Chong, S.; Chen, Y.; Sun, C. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 2018, 20, 694–700. [Google Scholar] [CrossRef]
- Tian, X.; Ma, H.; Li, Z.; Yan, S.; Ma, L.; Yu, F.; Wang, G.; Guo, X.; Ma, Y.; Wong, C. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J. Power Sources 2017, 359, 88–96. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Zhao, C.; Shao, X.; Zhu, Z. Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochim. Acta 2018, 291, 287–296. [Google Scholar] [CrossRef]
- Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Zheng, M. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 2016, 302, 164–173. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Z.; Dai, J.; Yan, Y. Waste biomass based-activated carbons derived from soybean Pods as electrode materials for high-performance supercapacitors. ChemistrySelect 2018, 3, 5726–5732. [Google Scholar] [CrossRef]
Sample | C (%) | O (%) | H (%) | N (%) |
---|---|---|---|---|
SD-AC | 67.46 | 26.83 | 3.02 | 0.22 |
Sample | SBET (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | Average Pore Size (nm) |
---|---|---|---|---|
SD-AC | 621 | 0.35 | 0.24 | 0.55/2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, J.; Hu, S.; Qian, G.; Shi, J.; Zhao, S.; Wang, Y.; Wang, C.; Lian, J. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials 2022, 12, 810. https://doi.org/10.3390/nano12050810
Zhou Y, Li J, Hu S, Qian G, Shi J, Zhao S, Wang Y, Wang C, Lian J. Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials. 2022; 12(5):810. https://doi.org/10.3390/nano12050810
Chicago/Turabian StyleZhou, Yan, Jun Li, Shilin Hu, Gujie Qian, Juanjuan Shi, Shengyun Zhao, Yulin Wang, Chuan Wang, and Jiabiao Lian. 2022. "Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors" Nanomaterials 12, no. 5: 810. https://doi.org/10.3390/nano12050810
APA StyleZhou, Y., Li, J., Hu, S., Qian, G., Shi, J., Zhao, S., Wang, Y., Wang, C., & Lian, J. (2022). Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials, 12(5), 810. https://doi.org/10.3390/nano12050810