A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of α-MoO3 Nanobelts
2.2. Preparation of MXene Nanosheets
2.3. Preparation of α-MoO3/MXene Film Free-Standing Electrode
2.4. Material Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-T.; Zhang, P.; Sun, N.; Anasori, B. Self-Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Adv. Mater. 2018, 30, 1707334. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.; Taberna, P.-L.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Cook, J.B.; Lin, H.; Ko, J.S. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef]
- Griffith, K.J.; Forse, A.C.; Griffin, J.M.; Grey, C.P. High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. J. Am. Chem. Soc. 2016, 138, 8888–8899. [Google Scholar] [CrossRef] [Green Version]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-filmpseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef]
- Sathiya, M.; Prakash, A.S.; Ramesha, K.; Tarascon, J.-M. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–19299. [Google Scholar] [CrossRef]
- Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y.; Shen, M.; Dunn, B.; Lu, Y. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Adv. Mater. 2011, 23, 791–795. [Google Scholar] [CrossRef]
- Chen, H.; Ma, H.; Li, C. Host-Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano 2021, 15, 15502–15537. [Google Scholar] [CrossRef]
- Kajiyama, S.; Szabova, L.; Iinuma, H.; Sugahara, A. Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination. Adv. Energy Mater. 2017, 7, 1601873. [Google Scholar] [CrossRef]
- Wang, X.; Mathis, T.S.; Li, K.; Lin, Z.; Vlcek, L.; Torita, T.; Gogotsi, Y. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241–248. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1641. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Cui, G.; Zhu, T.; Zhang, J.; Yu, C.; Cui, J.; Wu, J.; Tan, H.H.; Zhang, Y.; et al. Carbon-Coated Self-Assembled Ultrathin T-Nb2O5 Nanosheets for High-Rate Lithium-Ion Storage with Superior Cycling Stability. ACS Appl. Energy Mater. 2020, 3, 12037–12045. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, X.; Chen, P.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 2019, 58, 455–465. [Google Scholar] [CrossRef]
- Luo, Z.; Miao, R.; Huan, T.D.; Mosa, I.M. Mesoporous MoO3–x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions. Adv. Energy Mater. 2016, 6, 1600528. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Wang, Q.; Wang, Q. High-Capacity and Kinetically Accelerated Lithium Storage in MoO3 Enabled by Oxygen Vacancies and Heterostructure. Adv. Energy Mater. 2021, 11, 2101712. [Google Scholar] [CrossRef]
- Zheng, W.; Halim, J.; Ghazaly, A.E.; Etman, A.S. Flexible Free-Standing MoO3/Ti3C2Tz MXene Composite Films with High Gravimetric and Volumetric Capacities. Adv. Sci. 2021, 8, 2003656. [Google Scholar] [CrossRef]
- Shuck, C.E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Scalable Synthesis of Ti3C2Tx MXene. Adv. Energy Mater. 2020, 22, 1901241. [Google Scholar]
- Yan, P.; Ji, L.; Liu, X.; Guan, Q.; Guo, J.; Shen, Y.; Zhang, H.; Wei, W.; Cui, X.; Xu, Q. 2D amorphous-MoO3-x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 2021, 86, 106139. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, X.; Shang, T.; Deng, Y.; Wang, N.; Dong, X.; Zhao, J.; Chen, D.; Tao, Y.; Yang, Q.-H. Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Adv. Funct. Mater. 2021, 31, 2102874. [Google Scholar] [CrossRef]
- Yan, J.; Ren, C.E.; Maleski, K.; Hatter, C.B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Adv. Funct. Mater. 2017, 27, 1701264. [Google Scholar] [CrossRef]
- Zheng, W.; Halim, J.; Etman, A.S.; Ghazaly, A.E. Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene. Electrochim. Acta 2021, 370, 137665. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, X.; Liu, R.; Bai, Y.; Xiao, H.; Liu, Y.; Yuan, G. Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices. Nano-Micro Lett. 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, J.; Peng, S.; Qian, D. Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J. Phys. Chem. A 2013, 1, 2588–2594. [Google Scholar] [CrossRef]
- Cao, W.-T.; Ouyang, H.; Xin, W.; Chao, S.; Ma, C.; Li, Z.; Chen, F.; Ma, M.-G. A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity. Adv. Funct. Mater. 2020, 30, 2004181. [Google Scholar] [CrossRef]
- Yang, B.; Chen, J.; Wu, X.; Liu, B.; Liu, L.; Tang, Y.; Yan, X. Enhanced field emission performance of MXene-TiO2 composite films. Nanoscale 2021, 13, 7622–7629. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, C.; Wang, Y.; Tomsia, A.P.; Li, M.; Fang, S.; Baughman, R.H.; Jiang, L.; Cheng, Q. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077. [Google Scholar] [CrossRef]
- Ren, S.; Xu, J.-L.; Cheng, L.; Gao, X. Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 35878–35888. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ’clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Yao, B.; Huang, L.; Zhang, J.; Gao, X.; Wu, J.; Cheng, Y.; Xiao, X.; Wang, B.; Li, Y.; Zhou, J. Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Adv. Mater. 2016, 28, 6353–6358. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wang, L.; Cheng, C.; Yan, X. Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893–2896. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-L.; Zhao, S.-X.; Yu, L.; Zheng, X.-X.; Wang, Y.-F.; Nanb, C.-W.; Cao, G. Oxygen vacancy-enriched MoO3-x nanobelts for asymmetric supercapacitors with excellent room/ low temperature performance. J. Phys. Chem. A 2019, 7, 13205–13214. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, J.; Gao, Y.; Xu, Y. Asymmetric supercapacitors based on La-doped MoO3 nanobelts as advanced negative electrode and VOR nanosheets as positive electrode. J. Mater. Sci. 2021, 56, 1612–1629. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, N.; Guan, D.; Li, J.; Zhuang, Z.; Zhou, L.; Shi, C.; Liu, X.; Mai, L. Facet-Selective Deposition of FeOx on alpha-MoO3 Nanobelts for Lithium Storage. ACS Appl. Mater. Interfaces 2017, 9, 39425–39431. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Zhang, K. a-MoO3 nanorods coated with SnS2 nano sheets core-shell composite as high-performance anode materials of lithium ion batteries. Electrochim. Acta 2016, 222, 956–964. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.E.; Cao, J.; Cai, W.; Sui, J. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors. Chem. Commun. 2017, 53, 10723–10726. [Google Scholar] [CrossRef]
- Zhang, G.; Xiong, T.; Yanb, M.; Hea, L. α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy 2018, 49, 555–563. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Deng, L.; Ding, M.; Li, J.; He, X. Perpendicular growth of few-layered MoS2 nanosheets on MoO3 nanowires fabricated by direct anion exchange reactions for high-performance lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17764–17772. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Wang, H.; Zuo, W.; Li, Y.; Liu, J. Fabrication and Shell Optimization of Synergistic TiO2-MoO3 Core-Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 3524–3533. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wang, D.; Wang, Z.; Gao, Y.; Liu, J. A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage. Nanomaterials 2022, 12, 1422. https://doi.org/10.3390/nano12091422
Guo Z, Wang D, Wang Z, Gao Y, Liu J. A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage. Nanomaterials. 2022; 12(9):1422. https://doi.org/10.3390/nano12091422
Chicago/Turabian StyleGuo, Zihan, Dong Wang, Zhiwei Wang, Yanfang Gao, and Jinrong Liu. 2022. "A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage" Nanomaterials 12, no. 9: 1422. https://doi.org/10.3390/nano12091422
APA StyleGuo, Z., Wang, D., Wang, Z., Gao, Y., & Liu, J. (2022). A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage. Nanomaterials, 12(9), 1422. https://doi.org/10.3390/nano12091422