Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Synthesis of Host CuGaS-ZnS NCs and CuInS-ZnS NCs
2.3. Synthesis of Mn-Doped CuGaS-ZnS NCs and Mn-Doped CuInS-ZnS NCs
2.4. Decay Curve Fitting
2.5. Optical Setup for the Fluorescence Decay Testing on Mn-Doped NCs
3. Results and Discussion
3.1. Effects of Host NC
3.2. Effects of Mn Concentration in NCs
3.3. Demonstration of Time-Domain Fluorescence Characteristics under Pulsed 405 nm Laser Excitation and Bandpass-Filter-Based Emission Collection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marriott, G.; Clegg, R.M.; Arndt-Jovin, D.J.; Jovin, T.M. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys. J. 1991, 60, 1374–1387. [Google Scholar] [CrossRef]
- Collier, B.B.; McShane, M.J. Time-resolved measurements of luminescence. J. Lumin. 2013, 144, 180–190. [Google Scholar] [CrossRef]
- Zhang, R.; Yuan, J. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging. Acc. Chem. Res. 2020, 53, 1316–1329. [Google Scholar] [CrossRef]
- Song, X.; Knotts, M. Time-resolved luminescent lateral flow assay technology. Anal. Chim. Acta 2008, 626, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Lu, Y.; Leif, R.C.; Yang, S.; Rajendran, M.; Miller, L.W. How to Build a Time-Gated Luminescence Microscope. Curr. Protoc. Cytom. 2014, 67, 2.22.1–2.22.36. [Google Scholar] [CrossRef] [PubMed]
- Rodenko, O.; Fodgaard, H.; Tidemand-Lichtenberg, P.; Petersen, P.M.; Pedersen, C. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays. Opt. Express 2016, 24, 22135–22143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenko, O.; Eriksson, S.; Tidemand-Lichtenberg, P.; Troldborg, C.P.; Fodgaard, H.; Van Os, S.; Pedersen, C. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay. Biomed. Opt. Express 2017, 8, 3749–3762. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Tan, M.; Wang, G.; Yuan, J. Novel fluorescent europium chelate-doped silica nanoparticles: Preparation, characterization and time-resolved fluorometric application. J. Mater. Chem. 2004, 14, 851–856. [Google Scholar] [CrossRef]
- Talha, S.M.; Hytönen, J.; Westhorpe, A.; Kumar, S.; Khanna, N.; Pettersson, K. Europium Nanoparticle-Based High Performing Immunoassay for the Screening of Treponemal Antibodies. PLoS ONE 2013, 8, e84050. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415. [Google Scholar] [CrossRef]
- Pradhan, N. Mn-Doped Semiconductor Nanocrystals: 25 Years and Beyond. J. Phys. Chem. Lett. 2019, 10, 2574–2577. [Google Scholar] [CrossRef] [Green Version]
- Karan, N.S.; Sarma, D.D.; Kadam, R.M.; Pradhan, N. Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals. J. Phys. Chem. Lett. 2010, 1, 2863–2866. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, W.; Wang, X.; Ikezawa, M.; Jing, P.; Liu, X.; Li, H.; Zhao, J.; Masumoto, Y. Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell. J. Phys. Chem. C 2010, 114, 15331–15336. [Google Scholar] [CrossRef]
- Zeng, R.; Rutherford, M.; Xie, R.; Zou, B.; Peng, X. Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chem. Mater. 2010, 22, 2107–2113. [Google Scholar] [CrossRef]
- Zheng, J.; Yuan, X.; Ikezawa, M.; Jing, P.; Liu, X.; Zheng, Z.; Kong, X.; Zhao, J.; Masumoto, Y. Efficient Photoluminescence of Mn2+ Ions in MnS/ZnS Core/Shell Quantum Dots. J. Phys. Chem. C 2009, 113, 16969–16974. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhang, H.; Zhou, X.; Zhong, X. Facile Synthesis of Highly Luminescent Mn-Doped ZnS Nanocrystals. Inorg. Chem. 2011, 50, 10432–10438. [Google Scholar] [CrossRef]
- Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A. Luminescence of Nanocrystalline ZnSe: Mn2+. Phys. Chem. Phys. 2000, 2, 5445–5448. [Google Scholar] [CrossRef] [Green Version]
- Jindal, Z.; Verma, N.K. Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J. Mater. Sci. 2008, 43, 6539–6545. [Google Scholar] [CrossRef]
- Hazarika, A.; Layek, A.; De, S.; Nag, A.; Debnath, S.; Mahadevan, P.; Chowdhury, A.; Sarma, D.D. Ultranarrow and Widely TunableMn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of ZnS-CdS Alloys. Phys. Rev. Lett. 2013, 110, 267401. [Google Scholar] [CrossRef] [Green Version]
- Pu, C.; Ma, J.; Qin, H.; Yan, M.; Fu, T.; Niu, Y.; Yang, X.; Huang, Y.; Zhao, F.; Peng, X. Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications. ACS Cent. Sci. 2016, 2, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Bai, Z.; Zou, B. Tuning the Luminescence Properties of Colloidal I–III–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. J. Phys. Chem. Lett. 2012, 3, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chem. Mater. 2013, 25, 3753–3757. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-Y.; Kim, J.-H.; Jang, E.-P.; Lee, S.-H.; Jo, D.-Y.; Kim, Y.; Do, Y.R.; Yang, H. Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chem. Mater. 2019, 31, 2627–2634. [Google Scholar] [CrossRef]
- Guan, Z.; Tang, A.; Lv, P.; Liu, Z.; Li, X.; Tan, Z.; Hayat, T.; Alsaedi, A.; Yang, C.; Teng, F. New Insights into the Formation and Color-Tunable Optical Properties of Multinary Cu-In-Zn-based Chalcogenide Semiconductor Nanocrystals. Adv. Opt. Mater. 2018, 6, 1701389. [Google Scholar] [CrossRef]
- Chetty, S.S.; Praneetha, S.; Murugan, A.V.; Govarthanan, K.; Verma, R.S. Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells Labeled with Mn2+ and Gd3+ Co-Doped CuInS2–ZnS Nanocrystals for Multimodality Imaging in a Tumor Mice Model. ACS Appl. Mater. Interfaces 2020, 12, 3415–3429. [Google Scholar] [CrossRef]
- Ueng, H.Y.; Hwang, H.L. The defect structure of CuInS2. Part I: Intrinsic defects. J. Phys. Chem. Solids 1989, 50, 1297–1305. [Google Scholar] [CrossRef]
- Huang, L.; Publicover, N.G.; Hunter, K.W.; Ahmadiantehrani, M.; de Bettencourt-Dias, A.; Bell, T.W.; Zhu, X. Cadmium and Zinc Alloyed Cu-In-S Nanocrystals and Their Optical Properties. J. Nanopart. Res. 2013, 15, 2056. [Google Scholar] [CrossRef]
- Zang, H.; Li, H.; Makarov, N.S.; Velizhanin, K.A.; Wu, K.; Park, Y.S.; Klimov, V.I. ThickSshell CuInS2/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Lett. 2017, 17, 1787–1795. [Google Scholar] [CrossRef]
- Yarema, O.; Yarema, M.; Wood, V. Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chem. Mater. 2018, 30, 1446–1461. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, N. Red-Tuned Mn d-d Emission in Doped Semiconductor Nanocrystals. ChemPhysChem 2015, 17, 1087–1094. [Google Scholar] [CrossRef]
- Manna, G.; Jana, S.; Bose, R.; Pradhan, N. Mn-Doped Multinary CIZS and AIZS Nanocrystals. J. Phys. Chem. Lett. 2012, 3, 2528–2534. [Google Scholar] [CrossRef]
- Tang, X.; Zu, Z.; Bian, L.; Du, J.; Chen, W.; Zeng, X.; Wen, M.; Zang, Z.; Xue, J. Synthesis of Mn Doping Ag–In–Zn–S Nanoparticles and Their Photoluminescence Properties. Mater. Des. 2016, 91, 256–261. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, R.; Ji, X.; Pan, D. Alloyed Mn–Cu–In–S Nanocrystals: A New Type of Diluted Magnetic Semiconductor Quantum Dots. Nanotechnology 2012, 23, 255706. [Google Scholar] [CrossRef]
- Cao, S.; Li, C.; Wang, L.; Shang, M.; Wei, G.; Zheng, J.; Yang, W. Long-Lived and Well-Resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots. Sci. Rep. 2014, 4, 7510. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Zhao, J.; Yang, W.; Li, C.; Zheng, J. Mn2+-doped Zn–In–S Quantum Dots with Tunable Bandgaps and High Photoluminescence Properties. J. Mater. Chem. C 2015, 3, 8844–8851. [Google Scholar] [CrossRef]
- Peng, L.; Li, D.; Zhang, Z.; Huang, K.; Zhang, Y.; Shi, Z.; Xie, R.; Yang, W. Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Res. 2015, 8, 3316–3331. [Google Scholar] [CrossRef]
- Jo, D.-Y.; Kim, D.; Kim, J.-H.; Chae, H.; Seo, H.J.; Do, Y.R.; Yang, H. Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping. ACS Appl. Mater. Interfaces 2016, 8, 12291–12297. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, B.-Y.; Yang, H. Synthesis of Mn-doped CuGaS2 quantum dots and their application as single downconverters for high-color rendering solid-state lighting devices. Opt. Mater. Express 2018, 8, 221–230. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, K.H.; Yoon, S.Y.; Kim, Y.; Lee, S.H.; Kim, H.S.; Yang, H. Tunable Emission of Bluish Zn–Cu–Ga–S Quantum Dots by Mn Doping and Their Electroluminescence. ACS Appl. Mater. Interfaces 2019, 11, 8250–8257. [Google Scholar] [CrossRef]
- Gallian, B.; Dong, G.; Zhu, X. A compact time-gated instrument for QDs with low excitation energy and millisecond fluorescence lifetime as signal reporters, and its detection application. Rev. Sci. Instrum. 2019, 90, 104701. [Google Scholar] [CrossRef]
- Nelson, H.D.; Gamelin, D.R. Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions. J. Phys. Chem. C 2018, 122, 18124–18133. [Google Scholar] [CrossRef]
- Cho, D.Y.; Xi, L.; Boothroyd, C.; Kardynal, B.; Lam, Y.M. The Role of Ion Exchange in the Passivation of In(Zn)P Nano-crystals with ZnS. Sci. Rep. 2016, 6, 22818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y.C. On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. J. Am. Chem. Soc. 2008, 130, 15649–15661. [Google Scholar] [CrossRef]
- Harrison, C.; Gallian, B.; Dong, G.; Wang, Y.; Zhao, J.; Zhu, X. Mn Doped Cu-Zn-In-S/ZnS nanocrystals: Optical properties and their use as time-gated fluorescence probes. J. Nanopart. Res. 2019, 21, 248. [Google Scholar] [CrossRef]
- Zaeimian, M.S.; Gallian, B.; Harrison, C.; Wang, Y.; Zhao, J.; Zhu, X. Mn doped AZIS/ZnS nanocrystals (NCs): Effects of Ag and Mn levels on NC optical properties. J. Alloys Compd. 2018, 765, 236–244. [Google Scholar] [CrossRef]
- Chen, S.; Zaeimian, M.S.; Monteiro, J.; Zhao, J.; Mamalis, A.; de Bettencourt-Dias, A.; Zhu, X. Mn doped AIZS/ZnS nanocrystals: Synthesis and optical properties. J. Alloys Compd. 2017, 725, 1077–1083. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y.C. Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428–12429. [Google Scholar] [CrossRef]
- Thakar, R.; Chen, A.Y.; Snee, P. Efficient Emission from Core/(Doped) Shell Nanoparticles: Applications for Chemical Sensing. Nano Lett. 2007, 7, 3429–3432. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, T.; Dai, G.; Zou, B. Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals. J. Phys. Chem. C 2011, 115, 3005–3010. [Google Scholar] [CrossRef]
- Bradshaw, L.R.; May, J.W.; Dempsey, J.; Li, X.; Gamelin, D.R. Ferromagnetic excited-state Mn2+ dimers in Zn1−xMnxSe quantum dots observed by time-resolved magnetophotoluminescence. Phys. Rev. B 2014, 89, 115312. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Q.; Wang, L.; Liu, X.; Yan, W.; Wu, T.; Bu, X.; Feng, P. Atomically Precise Doping of Monomanganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn2+ Emission. J. Am. Chem. Soc. 2014, 136, 4769–4779. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Yang, Y.-T.; Qin, Z.-Z.; Li, D.; Wang, S.; Liu, Y.; Zou, X.; Wu, Y.-B.; Wu, T. Exploring Mn2+-location-dependent red emission from (Mn/Zn)–Ga–Sn–S supertetrahedral nanoclusters with relatively precise dopant positions. J. Mater. Chem. C 2016, 4, 10435–10444. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Han, B.; Wang, X.; Wang, Z.; Xue, C.; Bian, G.; Hu, D.; Zhou, R.; Li, D.-S.; et al. New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors. J. Am. Chem. Soc. 2020, 142, 6649–6660. [Google Scholar] [CrossRef]
- Pradhan, N.; Peng, X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347. [Google Scholar] [CrossRef]
- Sperling, R.A.; Parak, W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. Trans. R. Soc. A 2010, 368, 1333. [Google Scholar] [CrossRef]
Composition Ratio (mmol) | Cu/Ga = 1/8 | Cu/Ga = 1/4 | Cu/In = 1/8 | Cu/In = 1/4 | |
---|---|---|---|---|---|
Without Mn Doping | Wavelength (nm) | ~500 | ~530 | ~545 | ~570 |
QY | 2% | 1% | 5% | 0.5% | |
τ1 (ns) | 29 | 20 | 71 | 88 | |
A1 | 91.2% | 98.7% | 86.5% | 80.6% | |
τ2 (ns) | 548 | 518 | 840 | 747 | |
A2 | 8.8% | 1.3% | 13.5% | 19.4% | |
Avg τ (ns) | 365 | 371 | 569 | 530 | |
With Mn Doping (Mn = 0.0125 mmol) | Wavelength (nm) | ~595 | ~595 | ~595 | ~595 |
QY | 47% | 12% | 14% | 3% | |
τ1 (ms) | 0.34 | 0.22 | 0.19 | 0.11 | |
A1 | 70.0% | 75.2% | 76.6% | 68.2% | |
τ2 (ms) | 2.20 | 1.63 | 1.47 | 1.03 | |
A2 | 30.0% | 24.8% | 23.4% | 31.8% | |
Avg τ (ms) | 1.71 | 1.22 | 1.09 | 0.86 |
Mn Conc. in Synthesis (mmol) | Wavelength (nm) | QY | τ1 (ms) | A1 | τ2 (ms) | A2 | Avg τ (ms) |
---|---|---|---|---|---|---|---|
0.003125 | ~595 | 18.8% | 0.51 | 51.6% | 4.09 | 48.4% | 3.67 |
0.00625 | ~595 | 16.5% | 0.39 | 70.0% | 2.99 | 30.0% | 2.38 |
0.0125 | ~595 | 47.4% | 0.34 | 69.9% | 2.20 | 30.1% | 1.71 |
0.025 | ~595 | 28.7% | 0.14 | 78.0% | 1.02 | 36.0% | 0.73 |
0.05 | ~600 | 11.7% | 0.06 | 94.9% | 0.64 | 5.1% | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Hegseth, T.; Zhu, X. Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration. Nanomaterials 2022, 12, 994. https://doi.org/10.3390/nano12060994
Lee B, Hegseth T, Zhu X. Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration. Nanomaterials. 2022; 12(6):994. https://doi.org/10.3390/nano12060994
Chicago/Turabian StyleLee, Bryan, Tristan Hegseth, and Xiaoshan Zhu. 2022. "Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration" Nanomaterials 12, no. 6: 994. https://doi.org/10.3390/nano12060994
APA StyleLee, B., Hegseth, T., & Zhu, X. (2022). Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration. Nanomaterials, 12(6), 994. https://doi.org/10.3390/nano12060994