Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lipid Nanocarriers Preparation
2.3. HSD Method Combined with the Phase Inversion Temperature Technique
2.4. HPH Method Combined with the Phase Inversion Temperature Technique
2.5. Physico-Chemical and Morphological Characterization of NEs
2.5.1. Stability Studies of NEs and Free CUR and QU
2.5.2. Size and Zeta Potential Measurements
2.5.3. Morphological Evaluation of NEs
2.5.4. Determination of CUR and QU Concentration in the NEs by HPLC
2.5.5. Determination of the Recovery and Encapsulation Efficiency
2.5.6. Evaluation of the Formulation Viscosity and Gelation of the Formulation in the Presence of Simulated Nasal Fluid in Vitro
2.5.7. Determination of Mucoadhesive Potential in Vitro
2.5.8. In Vitro Release Studies
2.5.9. Ex Vivo Permeation and Retention Studies
2.5.10. Worm Maintenance, Treatment, and Survival Test
3. Results
3.1. Size and Polydispersity Index (PDI)
3.2. Stability Evaluation of NEs and Free CUR and QU
3.3. Determination of Drug Content, Recovery and Entrapment Efficiency
3.4. Transmission Electron Microscopy (TEM)
3.5. Evaluation of Viscosity and Mucoadhesive Potential In Vitro
3.6. In Vitro Release Studies
3.7. Permeation and Retention of CUR and QU through Porcine Nasal Mucosa
3.8. Caenorhabditi Elegans Lifespan Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amit, T.; Avramovich-Tirosh, Y.; Youdim, M.B.; Mandel, S. Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J. 2008, 5, 1296–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Li, Y. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing A_1-42 oligomers and upregulating synaptic plasticity–related proteins in the hippocampus. Neuroscience 2009, 163, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in alzheimer transgenic mice. Brain Res. 2008, 1214, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol. 2018, 9, 1383. [Google Scholar] [CrossRef]
- Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 2018, 26, 349–360. [Google Scholar] [CrossRef]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Jobin, C.; Brandham, C.A.; Russo, M.P.; Juma, B.; Narula, A.S.; Brenner, D.A.; Sartor, R.B. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor l-kappa b kinase activity. J. Immunol. 1999, 163, 3474–3483. [Google Scholar]
- Péret-Almeida, L.; Naghetini, C.C.; Nunan, E.A. Atividade antimicrobiana in vitro do rizoma em pó, dos pigmentos curcuminóides e dos óleos e dos essenciais da Curcuma longa L. Ciência e Agrotecnologia 2008, 32, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol. 2010, 79, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016, 84, 892–908. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Gamba, P.; Badilli, U.; Gargiulo, S.; Maina, M.; Guina, T.; Calfapietra, S.; Biasi, F.; Cavalli, R.; Poli, G.; et al. Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols. PLoS ONE 2014, 9, e96795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem. 2013, 20, 2572–2582. [Google Scholar] [CrossRef] [PubMed]
- Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 2015, 7, 2345–2358. [Google Scholar] [CrossRef] [PubMed]
- Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; et al. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther. 2012, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004, 2, 201–230. [Google Scholar] [CrossRef]
- Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol. 2011, 63, 342–351. [Google Scholar] [CrossRef]
- Vaz, G.R.; Hädrich, G.; Bidone, J.; Rodrigues, J.L.; Falkembach, M.C.; Putaux, J.-L.; Hort, M.A.; Monserrat, J.M.; Varela Junior, A.S.; Teixeira, H.F.; et al. Development of nasal lipid nanocarriers containing curcumin for brain targeting. J. Alzheimers Dis. 2017, 59, 961–974. [Google Scholar] [CrossRef]
- Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol. 2007, 5:3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol. 2007, 595, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, V.; Mishra, A.K.; Chuttani, K.; Kaur, I.P. Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. Int. J. Pharm. 2013, 448, 354–359. [Google Scholar] [CrossRef]
- Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. 2010, 343, 489–499. [Google Scholar] [CrossRef]
- Driscoll, D.F. Lipid injectable emulsions: Pharmacopeial and safety issues. Pharm. Res. 2006, 23, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.F.; Fang, C.L.; Liao, M.H.; Fang, J.Y. The effect of oil components on the physicochemical properties and drug delivery of emulsions: Tocol emulsion versus lipid emulsion. Int. J. Pharm. 2007, 335, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Tamilvanan, S. Oil-in-water lipid emulsions: Implications for parenteral and ocular delivering systems. Prog. Lipid Res. 2004, 43, 489–533. [Google Scholar] [CrossRef]
- Wang, J.-J.; Sung, K.C.; Yeh, C.-H.; Fang, J.-Y. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions. Int. J. Pharm. 2008, 353, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Connor, W.E.; Neuringer, M.; Reisbick, S. Essential fatty acids: The importance of n-3 fatty acids in the retina and brain. Nutr. Rev. 2009, 50, 21–29. [Google Scholar] [CrossRef]
- McGahon, B.M.; Martin, D.S.; Horrobin, D.F.; Lynch, M.A. Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with v-3 fatty acids. Neuroscience 1999, 94, 305–314. [Google Scholar] [CrossRef]
- Gamoh, S.; Hashimoto, M.; Sugioka, K.; Hossain, M.S.; Hata, N.; Misawa, Y.; Masumura, S. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999, 93, 237–241. [Google Scholar] [CrossRef]
- Mirnikjoo, B.; Brown, S.E.; Kim, H.F.S.; Marangell, L.B.; Sweatt, J.D.; Weeber, E.J. Protein kinase inhibition by omega-3 fatty acids. Protein kinase inhibition by omega-3 fatty acids. J. Biol. Chem. 2001, 276, 10888–10896. [Google Scholar] [CrossRef] [Green Version]
- Gordon, W.; Bazan, N. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J. Neurosci. 1990, 10, 2190–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-Y.; Akbar, M.; Lau, A.; Edsall, L. Inhibition of Neuronal apoptosis by docosahexaenoic acid (22:6n-3): Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 2000, 275, 35215–35223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues de Turco, E.B.; Belayev, L.; Liu, Y.; Busto, R.; Parkins, N.; Bazan, N.G.; Ginsberg, M.D. Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. J. Neurochem. 2002, 83, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Luchtman, D.W.; Song, C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: Findings from animal and clinical studies. Neuropharmacology 2013, 64, 550–565. [Google Scholar] [CrossRef]
- Orr, S.K.; Trépanier, M.-O.; Bazinet, R.P. N-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 97–103. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef]
- Karavasili, C.; Fatouros, D.G. Smart materials: In situ gel-forming systems for nasal delivery. Drug Discov. Today 2016, 21, 157–166. [Google Scholar] [CrossRef]
- Kirchhof, S.; Goepferich, A.M.; Brandl, F.P. Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm. 2005, 95, 227–238. [Google Scholar] [CrossRef]
- Dora, C.L.; Tagliari, M.; Silva, L.F.C.; Silva, M. Formulation study of quercetin-loaded lipid-based nanocarriers obtained by hot solvent diffusion method. Lat. Am. J. Pharm. 2011, 30, 289. [Google Scholar]
- Mäder, K.; Mehnert, W. Solid Lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Dora, C.L.; Putaux, J.-L.; Pignot-Paintrand, I.; Dubreuil, F.; Soldi, V.; Borsali, R.; Lemos-Senna, E. Physicochemical and morphological characterizations of glyceryl tristearate/castor oil nanocarriers prepared by the solvent diffusion method. J. Braz. Chem. Soc. 2012, 23, 1972–1981. [Google Scholar] [CrossRef] [Green Version]
- Vaz, G.R.; Clementino, A.; Bidone, J.; Villetti, M.A.; Falkembach, M.; Batista, M.; Barros, P.; Sonvico, F.; Dora, C. Curcumin and quercetin-loaded nanoemulsions: Physicochemical compatibility study and validation of a simultaneous quantification method. Nanomaterials 2020, 10, 1650. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloid Surf. B Biointerfaces 2014, 113, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Fachel, F.N.S.; Medeiros-Neves, B.; Dal Prá, M.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Box-behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery—In vitro studies. Carbohydr. Polym. 2018, 199, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Hägerström, H.; Edsman, K. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. J. Pharm. Pharmacol. 2001, 53, 1589–1599. [Google Scholar] [CrossRef]
- Velasques, K.; Maciel, T.R.; de Castro Dal Forno, A.H.; Teixeira, F.E.G.; da Fonseca, A.L.; Varotti, F.d.P.; Fajardo, A.R.; de Ávila, D.S.; Haas, S.E. Co-nanoencapsulation of antimalarial drugs increases their in vitro efficacy against plasmodium falciparum and decreases their toxicity to caenorhabditis elegans. Eur. J. Pharm. Sci. 2018, 118, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Naksuriya, O.; Okonogi, S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov. Ther. 2015, 9, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Diam, M.M.; Samak, D.H.; El-Sayed, Y.S.; Aleya, L.; Alarifi, S.; Alkahtani, S. Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ. Sci. Pollut. Res. 2019, 26, 3659–3665. [Google Scholar] [CrossRef]
- Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv. 2014, 23, 1326–1334. [Google Scholar] [CrossRef]
- Bazan, N.G.; Scott, B.L. Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses. Ups. J. Med. Sci. Suppl. 1990, 48, 97–107. [Google Scholar]
- Haag, M. Essential fatty acids and the brain. Can. J. Psychiatry 2003, 48, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gómez, P.; Garcia-Serrano, A.; Visioli, F.; Fontecha, J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot. Essent. Fatty Acids 2015, 101, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Dauncey, M.J. Nutrition, the brain and cognitive decline: Insights from epigenetics. Eur. J. Clin. Nutr. 2014, 68, 1179–1185. [Google Scholar] [CrossRef]
- Bazan, N.G. Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2006, 15, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Stark, D.T.; Bazan, N.G. Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer’s disease cellular models. Mol. Neurobiol. 2011, 43, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Anandharamakrishnan, C. Fabrication of a nutrient delivery system of docosahexaenoic acid nanoemulsions via high energy techniques. RSC Adv. 2016, 6, 3501–3513. [Google Scholar] [CrossRef]
- Hädrich, G.; Vaz, G.R.; Maidana, M.; Kratz, J.M.; Loch-Neckel, G.; Favarin, D.C.; Rogerio, A.d.P.; da Silva, F.M.R.; Muccillo-Baisch, A.L.; Dora, C.L. Anti-inflammatory effect and toxicology analysis of oral delivery quercetin nanosized emulsion in rats. Pharm. Res. 2016, 33, 983–993. [Google Scholar] [CrossRef]
- Busmann, E.F.; Martínez, D.G.; Lucas, H.; Mäder, K. Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications. Beilstein. J. Nanotechnol. 2020, 11, 213–224. [Google Scholar] [CrossRef]
- Dora, C.L.; Silva, L.F.C.; Putaux, J.-L.; Nishiyama, Y.; Pignot-Paintrand, I.; Borsali, R.; Lemos-Senna, E. Poly(ethylene glycol) hydroxystearate-based nanosized emulsions: Effect of surfactant concentration on their formation and ability to solubilize quercetin. J. Biomed. Nanotechnol. 2012, 8, 202–210. [Google Scholar] [CrossRef]
- Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 2016, 92, 224–234. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Day, A.J.; Morgan, M.R.A. Experimental determination of octanol−water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 2005, 53, 4355–4360. [Google Scholar] [CrossRef]
- Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000, 11, 1–18. [Google Scholar] [CrossRef]
- Kandimalla, K.K.; Donovan, M.D. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: Implications on nose-to-brain transport. J. Pharm. Sci. 2005, 94, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Östh, K.; Gråsjö, J.; Björk, E. A new method for drug transport studies on pig nasal mucosa using a horizontal ussing chamber. J. Pharm. Sci. 2002, 91, 1259–1273. [Google Scholar] [CrossRef]
- Daull, P.; Lallemand, F.; Garrigue, J.-S. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery: Cationic emulsion and ocular drug delivery. J. Pharm. Pharmacol. 2014, 66, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Mccrate, J.M.; Lee, J.C.-M.; Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 2011, 22, 105708. [Google Scholar] [CrossRef] [Green Version]
- Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of in situ gel for nasal delivery: Design, optimization, in vitro and in vivo evaluation. Drug Delivery 2014, 21, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Nanosized nasal emulgel of resveratrol: Preparation, optimization, in vitro evaluation and in vivo pharmacokinetic study. Drug Dev. Ind. Pharm. 2019, 45, 1624–1634. [Google Scholar] [CrossRef]
- Lopez-Bigas, N. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004, 32, 3108–3114. [Google Scholar] [CrossRef] [Green Version]
- Kaletta, T.; Hengartner, M.O. Finding function in novel targets: C. Elegans as a model organism. Nat. Rev. Drug Discov. 2006, 5, 387–399. [Google Scholar] [CrossRef]
- Caldwell, G.A.; Caldwell, K.A. Traversing a wormhole to combat Parkinson’s disease. Dis. Models Mech. 2008, 1, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosanjh, L.E.; Brown, M.; Rao, G.; Link, C.D.; Luo, Y. Behavioral phenotyping of a transgenic caenorhabditis elegans expressing neuronal amyloid-&beta. J. Alzheimers Dis. 2010, 19, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M.; Douda, J.A.; O’Donnell, M. Biologia Molecular: Princípios e Prática; Artmed: Porto Alegre, Brazil, 2012; ISBN 978-85-363-2741-9. [Google Scholar]
- Strange, K. C. Elegans: Methods and Applications; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; ISBN 978-1-58829-597-2. [Google Scholar]
- Dengg, M.; van Meel, J.C.A. Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J. Pharm. Toxicol. Methods 2004, 50, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.C.K.; Williams, P.L.; Benedetto, A.; Au, C.; Helmcke, K.J.; Aschner, M.; Meyer, J.N. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 2008, 106, 5–28. [Google Scholar] [CrossRef]
Formulation | PEG 660 Stearate (% w/v) | Castor Oil (mg) | ω-3 Fatty Acids (mg) | Egg Lecithin (mg) | CUR (mg) | QU (mg) |
---|---|---|---|---|---|---|
CQ NEdif- | 1.5 | 0.0750 | 0.0750 | 20 | 15 | 15 |
NEdif- | 1.5 | 0.0750 | 0.0750 | 20 | – | – |
CQ NE- | 1.5 | 2400 | 2400 | 1200 | 45 | 45 |
NE- | 1.5 | 2400 | 2400 | 1200 | – | – |
Preparation Method | Formulation | Size ± SD (nm) | Polydispersity Index ± SD (PDI) | Zeta Potential ± SD (mV) |
---|---|---|---|---|
Hot solvent diffusion | CQ NEdif- | 23.03 ± 3.11 | 0.300 ± 0.10 | −15.10 ± 2.35 |
NEdif- | 19.02 ± 1.30 | 0.260 ± 0.06 | −25.30 ± 2.42 | |
High-pressure homogenization | CQ NE- | 119.43 ± 0.83 | 0.202 ± 0.02 | −22.30 ± 0.15 |
NE- | 102.86 ± 1.80 | 0.183 ± 0.02 | −25.70 ± 0.46 | |
CQ NEgel | 244.80 ± 2.40 | 0.240 ± 0.03 | −29.10 ± 0.40 | |
NEgel | 134.87 ± 0.40 | 0.230 ± 0.02 | −25.70 ± 0.20 | |
CQ NE+ | 113.00 ± 0.25 | 0.210 ± 0.01 | +7.90 ± 0.24 | |
NE+ | 131.86 ± 0.8 | 0.246 ± 0.01 | +6.40 ± 0.20 |
Formulation | Temperature (°C) | Day 7 | Day 15 | Day 30 | |
---|---|---|---|---|---|
CQ NEdif- | 4 | 97.81 ± 2.7 | 98.49 ± 1.3 | 99.59 ± 0.5 | |
CUR | 22 | 96.99 ± 0.6 | 97.26 ± 4.0 | 98.49 ± 2.7 | |
40 | 98.77 ± 0.9 | 99.15 ± 1.0 | 99.10 ± 0.8 | ||
4 | 96.21 ± 1.2 | 96.07 ± 2.7 | 99.72 ± 2.7 | ||
QU | 22 | 94.27 ± 1.3 | 93.45 ± 0.5 | 94.50 ± 1.3 | |
40 | 94.40 ± 0.6 | 96.04 ± 2.0 | 96.58 ± 1.7 | ||
CQ NE- | 4 | 99.15 ± 1.3 | 99.66 ± 1.0 | 95.09 ± 3.3 | |
CUR | 22 | 98.30 ± 6.7 | 97.29 ± 5.0 | 87.98 ± 3.3 | |
40 | 94.75 ± 3.3 | 95.09 ± 3.0 | 85.95 ± 1.6 | ||
4 | 98.69 ± 0.4 | 99.10 ± 1.6 | 97.01 ± 3.3 | ||
QU | 22 | 94.37 ± 3.1 | 96.02 ± 4.9 | 96.35 ± 2.9 | |
40 | 85.09 ± 1.1 | 74.17 ± 1.6 | 64.73 ± 4.9 | ||
CQ NE+ | 4 | 99.53 ± 3.0 | 95.39 ± 3.3 | 96.47 ± 0.6 | |
CUR | 22 | 94.63 ± 1.5 | 94.30 ± 0.3 | 91.94 ± 1.5 | |
40 | 92.94 ± 1.5 | 93.09 ± 0.6 | 87.88 ± 1.5 | ||
4 | 96.02 ± 3.0 | 95.41 ± 0.6 | 95.60 ± 1.5 | ||
QU | 22 | 95.41 ± 3.2 | 95.10 ± 2.1 | 95.84 ± 1.3 | |
40 | 76.91 ± 3.0 | 57.33 ± 1.0 | 50.30 ± 3.0 |
Compound | 0 (min) | 60 (min) | 120 (min) | 180 (min) | 240 (min) |
---|---|---|---|---|---|
Free CUR | 100 | 91.8 ± 5.0 | 76.5 ± 9.0 | 59.6 ± 7.2 | 46.1 ± 9.4 |
Free QU | 100 | 8.9 ± 1.5 | 7.9 ± 5.4 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Formulation | Drug Loading QU (mg/mL) | Recovery (%) | Entrapment Efficiency (%) | Drug Loading CUR (mg/mL) | Recovery (%) | Entrapment Efficiency (%) |
---|---|---|---|---|---|---|
CQ NEdif- | 0.66 ± 0.03 | 88.00 ± 4.0 | >99 | 0.69 ± 0.02 | 92.00 ± 2.6 | >99 |
CQ NE- | 0.72 ± 0.01 | 96.00 ± 1.3 | >99 | 0.61 ± 0.01 | 81.33 ± 1.3 | >99 |
CQ NEgel | 0.72 ± 0.01 | 96.00 ± 1.3 | >99 | 0.61 ± 0.01 | 81.33 ± 1.3 | >99 |
CQ NE+ | 0.71 ± 0.03 | 94.66 ± 4.0 | >99 | 0.62 ± 0.02 | 82.66 ± 2.6 | >99 |
Force (mN) | |
---|---|
CQ NEdif- 0.5% | 7.59 ± 0.31 |
CQ NE- 0.5% | 8.70 ± 1.10 |
Formulation | Correlation Coefficient (r2) | ||
---|---|---|---|
CQ NE- | QU | First-order parameters | 0.9648 |
CUR | First-order parameters | 0.9753 | |
CQ NEdif- | QU | First-order parameters | 0.9820 |
CUR | First-order parameters | 0.9957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, G.R.; Carrasco, M.C.F.; Batista, M.M.; Barros, P.A.B.; Oliveira, M.d.C.; Muccillo-Baisch, A.L.; Yurgel, V.C.; Buttini, F.; Soares, F.A.A.; Cordeiro, L.M.; et al. Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration. Nanomaterials 2022, 12, 1073. https://doi.org/10.3390/nano12071073
Vaz GR, Carrasco MCF, Batista MM, Barros PAB, Oliveira MdC, Muccillo-Baisch AL, Yurgel VC, Buttini F, Soares FAA, Cordeiro LM, et al. Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration. Nanomaterials. 2022; 12(7):1073. https://doi.org/10.3390/nano12071073
Chicago/Turabian StyleVaz, Gustavo Richter, Mariana Corrêa Falkembach Carrasco, Matheus Monteiro Batista, Paula Alice Bezerra Barros, Meliza da Conceição Oliveira, Ana Luiza Muccillo-Baisch, Virginia Campello Yurgel, Francesca Buttini, Félix Alexandre Antunes Soares, Larissa Marafiga Cordeiro, and et al. 2022. "Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration" Nanomaterials 12, no. 7: 1073. https://doi.org/10.3390/nano12071073
APA StyleVaz, G. R., Carrasco, M. C. F., Batista, M. M., Barros, P. A. B., Oliveira, M. d. C., Muccillo-Baisch, A. L., Yurgel, V. C., Buttini, F., Soares, F. A. A., Cordeiro, L. M., Fachel, F., Teixeira, H. F., Bidone, J., de Oliveira, P. D., Sonvico, F., & Dora, C. L. (2022). Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration. Nanomaterials, 12(7), 1073. https://doi.org/10.3390/nano12071073