Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet
Abstract
:1. Introduction and Literature Review
2. Mathematical Model
3. Shooting Method
4. Results and Discussions
5. Conclusions
- There was a reduction in the velocity with increasing the values of , , , and M for aluminum oxide () and ferro () nano-particles.
- There was an increase in temperature gradients with higher values of R for aluminum oxide () and ferro () nano-particles.
- There was a decrease in the temperature gradients with higher values of aluminum oxide () and ferro () nano-particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
MHD | Magnetohydrodynamics | RK | Runge-Kutta |
IVP | Initial value problem | BVP | Boundary value problem |
M | Magnetic parameter (Wb/m) | Magnetic permeability | |
Prandtl number | , b | Rate constant of fluid material | |
parameter | |||
Local skin friction | Slip boundary condition | ||
Specific heat m s | f | Dimensionless velocity | |
Wall heat flux | Stefan-Boltzmann constant | ||
Nusselt number | b | Stretching rate constant | |
r | Radius | Kinematic viscosity ms | |
Reynolds number | Convective heat transfer | ||
Wall temperature (K) | Radiation parameter (Rad) | ||
u | Velocity along x-axis | Curvature parameter | |
Dynamic viscosity (kg/ms) | Stretching velocity along x-axis | ||
Ambient temperature (K) | p | Pressure | |
Volume fraction of nano-particles | Inclination parameter |
References
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Vleggaar, J. Laminar boundary-layer behaviour on continuous, accelerating surfaces. Chem. Eng. Sci. 1977, 32, 1517–1525. [Google Scholar] [CrossRef]
- Wang, C. The three-dimensional flow due to a stretching flat surface. Phys. Fluids 1984, 27, 1915–1917. [Google Scholar] [CrossRef]
- Sajid, M.; Ali, N.; Javed, T.; Abbas, Z. Stretching a curved surface in a viscous fluid. Chin. Phys. Lett. 2010, 27, 024703. [Google Scholar] [CrossRef]
- Roşca, N.C.; Pop, I. Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. Eur. J. Mech.-B/Fluids 2015, 51, 61–67. [Google Scholar] [CrossRef]
- Saif, R.S.; Muhammad, T.; Sadia, H.; Ellahi, R. Boundary layer flow due to a nonlinear stretching curved surface with convective boundary condition and homogeneous-heterogeneous reactions. Phys. A Stat. Mech. Its Appl. 2020, 551, 123996. [Google Scholar] [CrossRef]
- Murtaza, M.; Tzirtzilakis, E.; Ferdows, M. A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity. Int. J. Math. Comput. Sci. 2018, 12, 38–42. [Google Scholar]
- Shi, Q.H.; Shabbir, T.; Mushtaq, M.; Khan, M.I.; Shah, Z.; Kumam, P. Modelling and numerical computation for flow of micropolar fluid towards an exponential curved surface: A Keller box method. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Abbas, Z.; Sajid, M. MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation. J. Appl. Fluid Mech. 2016, 9, 131–138. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical Report; Argonne National Lab.: Argonne, IL, USA, 1995. [Google Scholar]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Li, Z.; Xia, D.; Zhou, X.; Cao, J.; Chen, W.; Wang, X. The hydrodynamics of self-rolling locomotion driven by the flexible pectoral fins of 3-D bionic dolphin. J. Ocean. Eng. Sci. 2021, 7, 29–40. [Google Scholar] [CrossRef]
- Gyergyek, S.; Kocjan, A.; Bjelić, A.; Grilc, M.; Likozar, B.; Makovec, D. Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals. Mater. Res. Lett. 2018, 6, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Sheremet, M.A.; Mehryan, S.; Kashkooli, F.M.; Pop, I.; Ghalambaz, M. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J. Therm. Anal. Calorimetry 2019, 135, 1381–1398. [Google Scholar] [CrossRef]
- Zekavatmand, S.M.; Rezazadeh, H.; Inc, M.; Vahidi, J.; Ghaemi, M.B. The new soliton solutions for long and short-wave interaction system. J. Ocean. Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Kashani, D.A.; Dinarvand, S.; Pop, I.; Hayat, T. Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 448–466. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Awais, M.; Islam, S.; Shah, Z.; Kumam, P. Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alex. Eng. J. 2021, 60, 3605–3619. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Hassan, M.; Marin, M.; Ellahi, R.; Alamri, S.Z. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf. Res. 2018, 49, 1837–1848. [Google Scholar] [CrossRef]
- Dinarvand, S. Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: A novel hybridity model. Microsyst. Technol. 2019, 25, 2609–2623. [Google Scholar] [CrossRef]
- Saeed, A.; Alghamdi, W.; Mukhtar, S.; Shah, S.I.A.; Kumam, P.; Gul, T.; Nasir, S.; Kumam, W. Darcy-Forchheimer hybrid nanofluid flow over a stretching curved surface with heat and mass transfer. PLoS ONE 2021, 16, e0249434. [Google Scholar] [CrossRef]
- Gohar, T.S.K.; Khan, I.; Gul, T.; Bilal, M. Mixed convection and thermally radiative hybrid nanofluid flow over a curved surface. Nanofluids Therm. Appl. 2022, 14, 1–10. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. 2020, 41, 507–520. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis. CDF Lett. 2019, 11, 21–33. [Google Scholar]
- Ahmed, A.; Nadeem, S. Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys. 2017, 7, 4130–4139. [Google Scholar] [CrossRef]
- Yousefi, M.; Dinarvand, S.; Yazdi, M.E.; Pop, I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 1716–1735. [Google Scholar] [CrossRef]
- Chu, Y.M.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.R. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021, 5, 119. [Google Scholar] [CrossRef]
- Bjelić, A.; Grilc, M.; Gyergyek, S.; Kocjan, A.; Makovec, D.; Likozar, B. Catalytic hydrogenation, hydrodeoxygenation, and hydrocracking processes of a lignin monomer model compound eugenol over magnetic Ru/C–Fe2O3 and mechanistic reaction microkinetics. Catalysts 2018, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.H.; Khan, M.I.; Chu, Y.M. Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Nazeer, M.; Hussain, F.; Khan, M.I.; El-Zahar, E.R.; Chu, Y.M.; Malik, M. Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. 2022, 420, 126868. [Google Scholar] [CrossRef]
- Gyergyek, S.; Kocjan, A.; Grilc, M.; Likozar, B.; Hočevar, B.; Makovec, D. A hierarchical Ru-bearing alumina/magnetic iron-oxide composite for the magnetically heated hydrogenation of furfural. Green Chem. 2020, 22, 5978–5983. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Chu, Y.M.; Shankaralingappa, B.; Gireesha, B.; Alzahrani, F.; Khan, M.I.; Khan, S.U. Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 2022, 419, 126883. [Google Scholar] [CrossRef]
- Malvandi, A.; Hedayati, F.; Nobari, M. An HAM analysis of stagnation-point flow of a nanofluid over a porous stretching sheet with heat generation. J. Appl. Fluid Mech. 2014, 7, 135–145. [Google Scholar]
- Ayub, R.; Ahmad, S.; Asjad, M.I.; Ahmad, M. Heat Transfer Analysis for Viscous Fluid Flow with the Newtonian Heating and Effect of Magnetic Force in a Rotating Regime. Complexity 2021, 2021, 9962732. [Google Scholar] [CrossRef]
- Irandoost Shahrestani, M.; Houshfar, E.; Ashjaee, M.; Allahvirdizadeh, P. Convective heat transfer and pumping power analysis of MWCNT+ Fe3O4/water hybrid nanofluid in a helical coiled heat exchanger with orthogonal rib turbulators. Front. Energy Res. 2021, 9, 12. [Google Scholar] [CrossRef]
- Sharma, R.P.; Mishra, S. A numerical simulation for the control of radiative heat energy and thermophoretic effects on MHD micropolar fluid with heat source. J. Ocean. Eng. Sci. 2021, 7, 92–98. [Google Scholar] [CrossRef]
- Hu, H.P. Theoretical Study of Convection Heat Transfer and Fluid Dynamics in Microchannels with Arrayed Microgrooves. Math. Probl. Eng. 2021, 2021, 3601509. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Prado, J.I.; Lugo, L. Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research. Appl. Therm. Eng. 2021, 2021, 117926. [Google Scholar] [CrossRef]
- Anoop, K.; Sundararajan, T.; Das, S.K. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 2009, 52, 2189–2195. [Google Scholar] [CrossRef]
- Saba, F.; Ahmed, N.; Hussain, S.; Khan, U.; Mohyud-Din, S.T.; Darus, M. Thermal analysis of nanofluid flow over a curved stretching surface suspended by carbon nanotubes with internal heat generation. Appl. Sci. 2018, 8, 395. [Google Scholar] [CrossRef] [Green Version]
- Grubka, L.; Bobba, K. Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transf. 1985, 107, 248–250. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 2009, 44, 369–375. [Google Scholar] [CrossRef]
Properties | /Water | Aluminum Oxide | Ferrofluid |
---|---|---|---|
(kg/m) | 997.1 | 3970 | 5180 |
(JK/kg) | 4180.0 | 765.0 | 650 |
k (W m/K) | 0.6071 | 40.0 | 9.7 |
(s/m) | × | × |
Pr | Saba et al. [42] | Grubkal et al. [43] | Ishak et al. [44] | Present Work |
---|---|---|---|---|
0.72 | 0.8086 | 0.8086 | 0.8058 | 0.8086 |
1.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
3.0 | 1.9237 | 1.9237 | 1.9237 | 1.9237 |
M | R | Lt | Pr | Skin Friction Co-Efficient, | Nusselt Number | ||||
---|---|---|---|---|---|---|---|---|---|
0.005 | 2.0 | 1.0 | 0.4 | 6.2 | 0.3 | 5.04486 | 5.4346 | 0.380146 | 0.379330 |
0.02 | 5.05593 | 5.44837 | 0.365899 | 0.365116 | |||||
0.04 | 5.06784 | 5.46335 | 0.347978 | 0.347237 | |||||
0.04 | 0.0 | 1.0 | 0.4 | 6.2 | 0.3 | 5.34173 | 5.75861 | 0.328696 | 0.327995 |
0.2 | 5.34159 | 5.75840 | 0.326459 | 0.325826 | |||||
0.4 | 5.3415 | 5.75825 | 0.324735 | 0.324156 | |||||
0.6 | 5.34144 | 5.75814 | 0.323365 | 0.322833 | |||||
0.04 | 0.2 | 0.0 | 0.4 | 6.2 | 0.3 | 3.20277 | 3.20512 | 0.334256 | 0.334621 |
1.0 | 3.43466 | 3.50167 | 0.332969 | 0.332993 | |||||
2.0 | 3.97763 | 4.15909 | 0.330530 | 0.330179 | |||||
3.0 | 4.63385 | 4.93133 | 0.328304 | 0.327762 | |||||
0.04 | 0.2 | 4.0 | 0.3 | 6.2 | 0.3 | 5.34159 | 5.75840 | 0.326459 | 0.325826 |
0.6 | 4.21659 | 4.65584 | 0.310688 | 0.309276 | |||||
0.9 | 3.88472 | 4.32912 | 0.304040 | 0.302058 | |||||
1.2 | 3.73050 | 4.17672 | 0.300530 | 0.298137 | |||||
0.04 | 2.0 | 1.0 | 0.4 | 6.2 | 0.3 | 5.34159 | 5.75840 | 0.326459 | 0.325826 |
7.0 | 5.34169 | 5.75855 | 0.328092 | 0.327410 | |||||
8.0 | 5.34182 | 5.75875 | 0.330049 | 0.329312 | |||||
9.0 | 5.34196 | 5.75898 | 0.331916 | 0.331131 | |||||
0.04 | 2.0 | 1.0 | 0.4 | 6.2 | 0.4 | 5.34159 | 5.75840 | 0.326459 | 0.325826 |
0.6 | 5.33985 | 5.75631 | 0.448490 | 0.447358 | |||||
0.8 | 5.33904 | 5.75476 | 0.551573 | 0.549915 | |||||
1.0 | 5.33835 | 5.75376 | 0.639806 | 0.637616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, A.; Zhang, Z.; Saeed, T.; Zeb, H.; Munir, T. Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet. Nanomaterials 2022, 12, 1152. https://doi.org/10.3390/nano12071152
Ashraf A, Zhang Z, Saeed T, Zeb H, Munir T. Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet. Nanomaterials. 2022; 12(7):1152. https://doi.org/10.3390/nano12071152
Chicago/Turabian StyleAshraf, Asifa, Zhiyue Zhang, Tareq Saeed, Hussan Zeb, and Taj Munir. 2022. "Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet" Nanomaterials 12, no. 7: 1152. https://doi.org/10.3390/nano12071152
APA StyleAshraf, A., Zhang, Z., Saeed, T., Zeb, H., & Munir, T. (2022). Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet. Nanomaterials, 12(7), 1152. https://doi.org/10.3390/nano12071152