Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions
Abstract
:1. Introduction
2. Analytical Model
2.1. Magnonic Snell’s Law
2.2. Total Internal Reflection
3. Micromagnetic Simulations
4. Spin-Wave Fiber and Lens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kruglyak, V.V.; Hicken, R.J. Magnonics: Experiment to prove the concept. J. Magn. Magn. Mater. 2006, 306, 191. [Google Scholar] [CrossRef] [Green Version]
- Kruglyak, V.V.; Demokritov, S.O.; Grundler, D. Magnonics. J. Phys. D Appl. Phys. 2010, 43, 264001. [Google Scholar] [CrossRef]
- Serga, A.A.; Chumak, A.V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002. [Google Scholar] [CrossRef]
- Lenk, B.; Ulrichs, H.; Garbs, F.; Münzenberg, M. The Building Blocks of Magnonics. Phys. Rep. 2011, 507, 107. [Google Scholar] [CrossRef] [Green Version]
- Demokritov, S.O.; Slavin, A.N. Magnonics: From Fundamentals to Applications, 1st ed.; Springer: New York, NY, USA, 2013; p. 125. [Google Scholar]
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453. [Google Scholar] [CrossRef]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef] [Green Version]
- Barman, A.; Gubbiotti, G.; Ladak, S.; Adeyeye, A.O.; Krawczyk, M.; Gräfe, J.; Adelmann, C.; Cotofana, S.; Naeemi, A.; Vasyuchka, V.I.; et al. The 2021 Magnonics Roadmap. J. Phys. Condens. Matter 2021, 33, 413001. [Google Scholar] [CrossRef] [PubMed]
- Bonbien, V.; Zhuo, F.; Salimath, A.; Ly, O.; About, A.; Manchon, A. Topological aspects of antiferromagnets. J. Phys. D Appl. Phys. 2022, 55, 103002. [Google Scholar] [CrossRef]
- Khitun, A.; Bao, M.; Wang, K.L. Magnonic logic circuits. J. Phys. D Appl. Phys. 2010, 43, 264005. [Google Scholar] [CrossRef]
- Chumak, A.V.; Serga, A.A.; Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 2014, 5, 4700. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, F.; Li, H.; Manchon, A. Topological phase transition and thermal Hall effect in kagome ferromagnets. Phys. Rev. B 2021, 104, 144422. [Google Scholar] [CrossRef]
- Zhuo, F.; Li, H.; Manchon, A. Topological thermal Hall effect and magnonic edge states in kagome ferromagnets with bond anisotropy. New J. Phys. 2022, 24, 023033. [Google Scholar] [CrossRef]
- Liu, Z.; Giesen, F.; Zhu, X.; Sydora, R.D.; Freeman, M.R. Spin Wave Dynamics and the Determination of Intrinsic Damping in Locally Excited Permalloy Thin Films. Phys. Rev. Lett. 2007, 98, 087201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serga, A.A.; Demokritov, S.O.; Hillebrands, B.; Slavin, A.N. Self-Generation of Two-Dimensional Spin-Wave Bullets. Phys. Rev. Lett. 2014, 92, 117203. [Google Scholar] [CrossRef] [PubMed]
- Covington, M.; Crawford, T.M.; Parker, G.J. Time-Resolved Measurement of Propagating Spin Waves in Ferromagnetic Thin Films. Phys. Rev. Lett. 2002, 89, 237202. [Google Scholar] [CrossRef] [PubMed]
- Demidov, V.E.; Jersch, J.; Demokritov, S.O.; Rott, K.; Krzysteczko, P.; Reiss, G. Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Phys. Rev. B 2009, 79, 054417. [Google Scholar] [CrossRef]
- Demidov, V.E.; Kostylev, M.P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S.O. Excitation of short-wavelength spin waves in magnonic waveguides. Appl. Phys. Lett. 2011, 99, 082507. [Google Scholar] [CrossRef]
- Stigloher, J. Snell’s Law for Spin Waves. Phys. Rev. Lett. 2016, 117, 037204. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, S.; Lee, K.S.; Han, D.S.; Jung, D.E.; Choi, Y.S. Negative refraction of dipole-exchange spin waves through a magnetic twin interface in restricted geometry. Appl. Phys. Lett. 2008, 92, 212501. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, B.; Cao, Y.; Yan, P. Probing the Dzyaloshinskii–Moriya Interaction via the Propagation of Spin Waves in Ferromagnetic Thin Films. Phys. Rev. Applied 2018, 10, 054018. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cao, Y.; Yan, P. Goos–Hänchen effect of spin waves at heterochiral interfaces. Phys. Rev. B 2019, 100, 064421. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Lee, K.S.; Kim, S.K. Spin-wave interference. Appl. Phys. Lett. 2006, 89, 062501. [Google Scholar] [CrossRef] [Green Version]
- Perzlmaier, K.; Woltersdorf, G.; Back, C.H. Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B 2008, 77, 054425. [Google Scholar] [CrossRef] [Green Version]
- Birt, D.R.; Gorman, B.O.; Tsoi, M.; Li, X.; Demidov, V.E.; Demokritov, S.O. Diffraction of spin waves from a submicrometer-size defect in a microwaveguide. Appl. Phys. Lett. 2009, 95, 122510. [Google Scholar] [CrossRef]
- Demokritov, S.O.; Serga, A.A.; André, A.; Demidov, V.E.; Kostylev, M.P.; Hillebrands, B.; Slavin, A.N. Tunneling of Dipolar Spin Waves through a Region of Inhomogeneous Magnetic Field. Phys. Rev. Lett. 2004, 93, 047201. [Google Scholar] [CrossRef]
- Stancil, D.D.; Henty, B.E.; Cepni, A.G.; Van’t Hof, J.P. Observation of an inverse Doppler shift from left-handed dipolar spin waves. Phys. Rev. B 2006, 74, 060404. [Google Scholar] [CrossRef] [Green Version]
- Vlaminck, V.; Bailleul, M. Current-Induced Spin-Wave Doppler Shift. Science 2008, 322, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, R.; Wulfhekel, W.; Kirschner, J. Domain-Wall Induced Phase Shifts in Spin Waves. Phys. Rev. Lett. 2004, 93, 257202. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Kim, S.K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 2008, 104, 053909. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, F.G.; Borys, P.; Soucaille, R.; Adam, J.P.; Stamps, R.L.; Kim, J.V. Narrow Magnonic Waveguides Based on Domain Walls. Phys. Rev. Lett. 2015, 114, 247206. [Google Scholar] [CrossRef]
- Mulkers, J.; Waeyenberge, B.V.; Milošević, M.V. Effects of spatially engineered Dzyaloshinskii–Moriya interaction in ferromagnetic films. Phys. Rev. B 2017, 95, 144401. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.; Fradin, F.Y.; Pearson, J.E.; Sebastian, T.; Bader, S.D.; Hillebrands, B.; Hoffmann, A.; Schultheiss, H. Realization of a spin-wave multiplexer. Nat. Commun. 2014, 5, 3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadovnikov, A.V.; Davies, C.S.; Grishin, S.V.; Kruglyak, V.V.; Romanenko, D.V.; Sharaevskii, Y.P.; Nikitov, S.A. Magnonic beam splitter: The building block of parallel magnonic circuitry. Appl. Phys. Lett. 2015, 106, 192406. [Google Scholar] [CrossRef]
- Lan, J.; Yu, W.; Wu, R.; Xiao, J. Spin-Wave Diode. Phys. Rev. X 2015, 5, 041049. [Google Scholar] [CrossRef]
- Seo, S.M.; Lee, K.J.; Yang, H.; Ono, T. Current-Induced Control of Spin-Wave Attenuation. Phys. Rev. Lett. 2009, 102, 147202. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Lan, J.; Wu, R.; Xiao, J. Magnetic Snell’s law and spin-wave fiber with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 2016, 94, 140410. [Google Scholar] [CrossRef] [Green Version]
- Jamali, M.; Kwon, J.H.; Seo, S.M.; Lee, K.J.; Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 2013, 3, 3160. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.S.; Francis, A.; Sadovnikov, A.V.; Chertopalov, S.V.; Bryan, M.T.; Grishin, S.V.; Allwood, D.A.; Sharaevskii, Y.P.; Nikitov, S.A.; Kruglyak, V.V. Towards graded-index magnonics: Steering spin waves in magnonic networks. Phys. Rev. B 2015, 92, 020408. [Google Scholar] [CrossRef] [Green Version]
- Davies, C.S.; Kruglyak, V.V. Graded-index magnonics. Low Temp. Phys. 2015, 41, 760. [Google Scholar] [CrossRef] [Green Version]
- Marchand, E.W. Gradient Index Optics, 1st ed.; ScienceDirect: London, UK, 1978; p. 125. [Google Scholar]
- Chen, H.; Chan, C.T.; Sheng, P. Transformation optics and metamaterials. Nat. Mater. 2010, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Domínguez, A.I.F.; Luo, Y.; Zhao, R. Capturing photons with transformation optics. Nat. Phys. 2013, 9, 518. [Google Scholar] [CrossRef]
- Dadoenkova, Y.S.; Dadoenkova, N.N.; Lyubchanskii, I.L.; Sokolovskyy, M.L.; Kłos, J.W.; Romero-Vivas, J.; Krawczyk, M. Huge Goos–Hänchen effect for spin waves: A promising tool for study magnetic properties at interfaces. Appl. Phys. Lett. 2012, 101, 042404. [Google Scholar] [CrossRef]
- Xi, H.; Xue, S. Spin-wave propagation and transmission along magnetic nanowires in long wavelength regime. J. Appl. Phys. 2007, 101, 123905. [Google Scholar] [CrossRef]
- Xi, H.; Wang, X.; Zheng, Y.; Ryan, P.J. Spin wave propagation and coupling in magnonic waveguides. J. Appl. Phys. 2008, 104, 063921. [Google Scholar] [CrossRef]
- Vogel, M.; Aßmann, R.; Pirro, P.; Chumak, A.V.; Hillebrands, B.; Freymann, G.V. Control of Spin-Wave Propagation using Magnetisation Gradients. Sci. Rep. 2018, 8, 11099. [Google Scholar] [CrossRef]
- Xing, X.; Zhou, Y. Fiber optics for spin waves. NPG Asia Mater. 2016, 8, e246. [Google Scholar] [CrossRef] [Green Version]
- Perez, N.; Diaz, L.L. Magnetic field induced spin-wave energy focusing. Phys. Rev. B 2015, 92, 014408. [Google Scholar] [CrossRef] [Green Version]
- Houshang, A.; Iacocca, E.; Dürrenfeld, P.; Sani, S.; Akerman, J.; Dumas, R. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotechnol. 2016, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Gruszecki, P.; Krawczyk, M. Spin wave beam propagation in ferromagnetic thin film with graded refractive index: Mirage effect and prospective applications. Phys. Rev. B 2018, 97, 094424. [Google Scholar]
- Wang, S.; Guan, X.; Cheng, X.; Lian, C.; Huang, T.; Miao, X. Spin-wave propagation steered by electric field modulated exchange interaction. Sci. Rep. 2016, 6, 31783. [Google Scholar] [CrossRef] [Green Version]
- Kakizakai, H.; Yamada, K.; Ando, F.; Kawaguchi, M.; Koyama, T.; Kim, S.; Moriyama, T.; Chiba, D.; Ono, T. Influence of sloped electric field on magnetic-field-induced domain wall creep in a perpendicularly magnetized Co wire. Jpn. J. Appl. Phys. 2017, 56, 050305. [Google Scholar] [CrossRef]
- Vogel, M.; Chumak, A.V.; Waller, E.H.; Langner, T.; Vasyuchka, V.I.; Hillebrands, B.; Freymann, G.V. Optically reconfigurable magnetic materials. Nat. Phys. 2015, 11, 487. [Google Scholar] [CrossRef] [Green Version]
- Busse, F.; Mansurova, M.; Lenk, B.; Ehe, M.; Münzenberg, M. A scenario for magnonic spin-wave traps. Sci. Rep. 2015, 5, 12824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzyaloshinskii, I.E. A thermodynamic theory of “weak”ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion Lattice in a Chiral Magnet. Science 2009, 323, 915. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.X.; Chien, C.L. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Phys. Rev. Lett. 2012, 108, 267201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, F.; Sun, Z.Z. Field-driven Domain Wall Motion in Ferromagnetic Nanowires with Bulk Dzyaloshinskii–Moriya Interaction. Sci. Rep. 2012, 6, 25122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N’Diaye, A.T.; Huo, Y.; Ma, T.P.; Chen, Y.; Kwon, H.Y.; Won, C.; et al. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films. Phys. Rev. Lett. 2013, 110, 177204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Ma, T.; N’Diaye, A.T.; Kwon, H.; Won, C.; Wu, Y.; Schmid, A.K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671. [Google Scholar] [CrossRef] [Green Version]
- Torrejon, J.; Kim, J.; Sinha, J.; Mitani, S.; Hayashi, M.; Yamanouchi, M.; Ohno, H. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 2014, 5, 4655. [Google Scholar] [CrossRef]
- Tacchi, S.; Troncoso, R.E.; Ahlberg, M.; Gubbiotti, G.; Madami, M.; Akerman, J.; Landeros, P. Interfacial Dzyaloshinskii–Moriya Interaction in Pt/CoFeB Films: Effect of the Heavy-Metal Thickness. Phys. Rev. Lett. 2017, 118, 147201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belabbes, A.; Bihlmayer, G.; Bechstedt, F.; Blügel, S.; Manchon, A. Hund’s Rule-Driven Dzyaloshinskii–Moriya Interaction at 3d-5d Interfaces. Phys. Rev. Lett. 2016, 117, 247202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaoka, K.; Miwa, S.; Shiota, Y.; Mizuochi, N.; Suzuki, Y. Voltage induction of interfacial Dzyaloshinskii–Moriya interaction in Au/Fe/MgO artificial multilayer. Appl. Phys. Express 2015, 8, 063004. [Google Scholar] [CrossRef]
- Gilbert, T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 2004, 40, 3443–3449. [Google Scholar] [CrossRef]
- Bogdanov, A.N.; Rößler, U.K. Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers. Phys. Rev. Lett. 2001, 87, 037203. [Google Scholar] [CrossRef]
- Moon, J.H.; Seo, S.M.; Lee, K.J.; Kim, K.W.; Ryu, J.; Lee, H.W.; McMichael, R.D.; Stiles, M.D. Spin-wave propagation in the presence of interfacial Dzyaloshinskii–Moriya interaction. Phys. Rev. B 2013, 88, 184404. [Google Scholar] [CrossRef] [Green Version]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Qiu, X.; Yang, H. Asymmetric spin-wave dispersion due to Dzyaloshinskii–Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 2015, 106, 052403. [Google Scholar] [CrossRef]
- Manchon, A.; Ndiaye, P.; Moon, J.H.; Lee, H.W.; Lee, K.J. Magnon-mediated Dzyaloshinskii–Moriya torque in homogeneous ferromagnets. Phys. Rev. B 2014, 90, 224403. [Google Scholar] [CrossRef] [Green Version]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Klingler, S.; Chumak, A.V.; Mewes, T.; Khodadadi, B.; Mewes, C.; Dubs, C.; Surzhenko, O.; Hillebrands, B.; Conca, A. Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. J. Phys. D Appl. Phys. 2015, 48, 015001. [Google Scholar] [CrossRef]
- Gruszecki, P.; Romero-Vivas, J.; Dadoenkova, Y.S.; Dadoenkova, N.N.; LyubchanskiiI, L.; Krawczyk, M. Goos–Hänchen effect and bending of spin wave beams in thin magnetic films. Appl. Phys. Lett. 2014, 105, 242406. [Google Scholar] [CrossRef]
- Gruszecki, P.; Dadoenkova, Y.S.; Dadoenkova, N.N.; Lyubchanskii, I.L.; Vivas, J.R.; Guslienko, K.Y.; Krawczyk, M. Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film. Phys. Rev. B 2015, 92, 054427. [Google Scholar] [CrossRef] [Green Version]
- Gruszecki, P.; Mailyan, M.; Gorobets, O.; Krawczyk, M. Goos–Hänchen shift of a spin-wave beam transmitted through anisotropic interface between two ferromagnets. Phys. Rev. B 2017, 95, 014421. [Google Scholar] [CrossRef] [Green Version]
- Klos, J.W.; Gruszecki, P.; Serebryannikov, A.E.; Krawczyk, M. All-Angle Collimation for Spin Waves. IEEE Magn. Lett. 2015, 6, 3500804. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, F.G.; Borys, P.; Vansteenkiste, A.; Kim, J.V.; Stamps, R.L. Nonreciprocal spin-wave channeling along textures driven by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 2014, 89, 224408. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Moon, J.H.; Lee, H.W.; Lee, K.J. Spin-wave propagation in the presence of inhomogeneous Dzyaloshinskii–Moriya interactions. Phys. Rev. B 2017, 96, 184433. [Google Scholar] [CrossRef]
- Korner, H.S.; Stigloher, J.; Back, C.H. Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas. Phys. Rev. B 2017, 96, 100401. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Flacke, L.; Wei, W.; Liu, S.; Jia, H.; Chen, J.; Sheng, L.; Zhang, J.; Zhao, M.; Guo, C.; et al. Sub-50 nm wavelength spin waves excited by low-damping Co25Fe75 nanowires. Appl. Phys. Lett. 2021, 119, 152402. [Google Scholar] [CrossRef]
- Janson, O.; Rousochatzakis, I.; Tsirlin, A.A.; Belesi, M.; Leonov, A.A.; Rößler, U.K.; van den Brink, J.; Rosner, H. The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. Nat. Commun. 2014, 5, 5376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, F.; Bannenberg, L.; Wilhelm, H.; Chaboussant, G.; Debeer-Schmitt, L.M.; Schmidt, M.P.; Aqeel, A.; Palstra, T.T.M.; Brück, E.; Lefering, A.J.E.; et al. New magnetic phase of the chiral skyrmion material Cu2OSeO3. Sci. Adv. 2018, 4, eaat7323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Wu, H.C.; Litvinchuka, A.P.; Yuan, N.F.Q.; Lee, J.-J.; Dahal, R.; Berger, H.; Yang, H.-D.; Chu, C.-W. Room-temperature skyrmion phase in bulk Cu2OSeO3 under high pressures. Proc. Natl. Acad. Sci. USA 2020, 117, 8783–8787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, C.O.; Rosenberg, E.; Caretta, L.; Büttner, F.; Mann, M.; Marcus, C.; Bono, D.; Ross, C.A.; Beach, G.S.D. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 2019, 14, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Caretta, L.; Rosenberg, E.; Büttner, F.; Fakhrul, T.; Gargiani, P.; Valvidares, M.; Chen, Z.; Reddy, P.; Muller, D.A.; Ross, C.A.; et al. Interfacial Dzyaloshinskii–Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 2020, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Baldrati, L.; Ross, A.; Ren, Z.; Wu, R.; Becker, S.; Yang, J.; Jakob, G.; Brataas, A.; Kläui, M. Identifying the origin of the nonmonotonic thickness dependence of spin–orbit torque and interfacial Dzyaloshinskii–Moriya interaction in a ferrimagnetic insulator heterostructure. Phys. Rev. B 2020, 102, 054425. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, F.; Li, H.; Cheng, Z.; Manchon, A. Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions. Nanomaterials 2022, 12, 1159. https://doi.org/10.3390/nano12071159
Zhuo F, Li H, Cheng Z, Manchon A. Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions. Nanomaterials. 2022; 12(7):1159. https://doi.org/10.3390/nano12071159
Chicago/Turabian StyleZhuo, Fengjun, Hang Li, Zhenxiang Cheng, and Aurélien Manchon. 2022. "Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions" Nanomaterials 12, no. 7: 1159. https://doi.org/10.3390/nano12071159
APA StyleZhuo, F., Li, H., Cheng, Z., & Manchon, A. (2022). Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions. Nanomaterials, 12(7), 1159. https://doi.org/10.3390/nano12071159