Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZTO and Ag-ZTO Nanowires
2.2. Electrical Measurements
2.3. Photodegradation
2.4. Radical Trapping Experiment
2.5. Characterization
3. Results and Discussion
3.1. Morphology and Structure Analysis of ZTO NWs and Ag-ZTO NWs
3.1.1. SEM and XRD Analysis
3.1.2. HRTEM and EDS Analysis
3.1.3. XPS Analysis
3.1.4. UV–Vis and PL Analysis
3.2. Growth Mechanism
3.3. Electrical Measurements of Single ZTO NW and Ag-ZTO NW
3.4. Photocatalytic Properties of ZTO NWs and Ag-ZTO NWs
3.4.1. Photodegradation Activities
3.4.2. Effect of Reactive Free Radicals
3.4.3. Reliability and Stability
3.4.4. Photodegradation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Neppolian, B.; Choi, H.C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 2002, 46, 1173–1181. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Li, L.; Lou, Z.; Shen, G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv. Funct. Mater. 2018, 28, 1705389. [Google Scholar] [CrossRef]
- Li, L.; Gu, L.; Lou, Z.; Fan, Z.; Shen, G. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 2017, 11, 4067–4076. [Google Scholar] [CrossRef]
- Tharsika, T.; Haseeb, A.S.M.A.; Akbar, S.A.; Sabri, M.F.M.; Wong, Y.H. Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process. J. Alloys Compd. 2015, 618, 455–462. [Google Scholar] [CrossRef]
- Thanh, H.X.; Trung, D.D.; Trung, K.Q.; Van Dam, K.; Van Duy, N.; Hung, C.M.; Hoa, N.D.; Van Hieu, N. On-chip growth of single phase Zn2SnO4 nanowires by thermal evaporation method for gas sensor application. J. Alloys Compd. 2017, 708, 470–475. [Google Scholar] [CrossRef]
- Lana-Villarreal, T.; Boschloo, G.; Hagfeldt, A. Nanostructured zinc stannate as semiconductor working electrodes for dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 5549–5556. [Google Scholar] [CrossRef]
- Tan, B.; Toman, E.; Li, Y.; Wu, Y. Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 2007, 129, 4162–4163. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Shah, A.P.; Shimpi, N.G. An efficient photocatalytic degradation of organic dyes under visible light using zinc stannate (Zn2SnO4) nanorods prepared by microwave irradiation. Nano Struct. Nano Objects 2020, 21, 100410. [Google Scholar] [CrossRef]
- Shi, L.; Dai, Y. Synthesis and photocatalytic activity of Zn2SnO4 nanotube arrays. J. Mater. Chem. A 2013, 1, 12981–12986. [Google Scholar] [CrossRef]
- Rovisco, A.; Branquinho, R.; Deuermeier, J.; Freire, T.; Fortunato, E.; Martins, R.; Barquinha, P. Shape Effect of Zinc-Tin Oxide Nanostructures on Photodegradation of Methylene Blue and Rhodamine B under UV and Visible Light. ACS Appl. Nano Mater. 2021, 4, 1149–1161. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, D.; Yu, G.; Zhang, H.; Jin, D.; Yao, K. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties. J. Phys. Chem. B 2006, 110, 7631–7634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Deng, X.; Ding, M.; Huang, J.; Ju, D.; Xu, X. Synthesis of hollow cubic Zn2SnO4 sub-microstructures with enhanced photocatalytic performance. J. Alloys Compd. 2016, 671, 328–333. [Google Scholar] [CrossRef]
- Zeng, J.; Xin, M.D.; Li, K.; Wang, H.; Yan, H.; Zhang, W.J. Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. J. Phys. Chem. C 2008, 112, 4159–4167. [Google Scholar] [CrossRef]
- Shi, J.B.; Wu, P.F.; Lin, H.S.; Lin, Y.T.; Lee, H.W.; Kao, C.T.; Liao, W.H.; Young, S.L. Synthesis and characterization of single-crystalline zinc tin oxide nanowires. Nanoscale Res. Lett. 2014, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.L.; Yang, S.M.; Lu, K.C. Single Crystalline Higher Manganese Silicide Nanowire Arrays with Outstanding Physical Properties through Double Tube Chemical Vapor Deposition. Nanomaterials 2020, 10, 1880. [Google Scholar] [CrossRef]
- Huang, W.J.; Yang, S.M.; Liao, T.T.; Lu, K.C. Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics. CrystEngComm 2021, 23, 3270–3275. [Google Scholar] [CrossRef]
- Yao, Y.C.; Dai, X.R.; Hu, X.Y.; Huang, S.Z.; Jin, Z. Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Appl. Surf. Sci. 2016, 387, 469–476. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.; Zhang, Y. Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Mater. Sci. Semicond. Process. 2018, 73, 58–66. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, H.; Li, R.; Wang, X. Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J. Solgel Sci. Technol. 2017, 82, 509–518. [Google Scholar] [CrossRef]
- Zhang, L.; Du, L.; Yu, X.; Tan, S.; Cai, X.; Yang, P.; Gu, Y.; Mai, W. Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO–graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 3623–3629. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.; Carlson, M.T.; Stolarczyk, J.K.; Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 2016, 1, 1137–1142. [Google Scholar] [CrossRef]
- Gu, W.; Choi, H.; Kim, K. Universal approach to accurate resistivity measurement for a single nanowire: Theory and application. Appl. Phys. Lett. 2006, 89, 253102. [Google Scholar] [CrossRef]
- Körbahti, B.K.; Rauf, M.A. Application of response surface analysis to the photolytic degradation of Basic Red 2 dye. Chem. Eng. J. 2008, 138, 166–171. [Google Scholar] [CrossRef]
- Arafat, M.M.; Ong, J.Y.; Haseeb, A.S.M.A. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors. Appl. Surf. Sci. 2018, 435, 928–936. [Google Scholar] [CrossRef]
- Lin, J.H.; Huang, Y.J.; Su, Y.P.; Liu, C.A.; Devan, R.S.; Ho, C.H.; Wang, Y.P.; Lee, H.W.; Chang, C.M.; Liou, Y.; et al. Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates. RSC Adv. 2012, 2, 2123–2127. [Google Scholar] [CrossRef]
- Jie, L.; Chao, X. XPS examination of tin oxide on float glass surface. J. Non Cryst. Solids 1990, 119, 37–40. [Google Scholar] [CrossRef]
- Bai, S.; Chen, C.; Tian, Y.; Chen, S.; Luo, R.; Li, D.; Chen, A.; Liu, C.C. Facile synthesis of α-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance. Mater. Res. Bull. 2015, 64, 252–256. [Google Scholar] [CrossRef]
- Han, S.W.; Kim, Y.; Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci. 1998, 208, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Arooj, S.; Xu, T.; Hou, X.; Wang, Y.; Tong, J.; Chu, R.; Liu, B. Green emission of indium oxide via hydrogen treatment. RSC Adv. 2018, 8, 11828–11833. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.B.; Barka-Bouaifel, F.; Elhouichet, H.; Sieber, B.; Addad, A.; Boussekey, L.; Férid, M.; Boukherroub, R. Hydrothermal synthesis, phase structure, optical and photocatalytic properties of Zn2SnO4 nanoparticles. J. Colloid Interface Sci. 2015, 457, 360–369. [Google Scholar]
- Deng, B.; Da Rosa, A.L.; Frauenheim, T.; Xiao, J.P.; Shi, X.Q.; Zhang, R.Q.; Van Hove, M.A. Oxygen vacancy diffusion in bare ZnO nanowires. Nanoscale 2014, 6, 11882–11886. [Google Scholar] [CrossRef] [Green Version]
- Karthik, K.R.G.; Andreasson, B.P.; Sun, C.; Pramana, S.S.; Varghese, B.; Sow, C.H.; Mathews, N.; Wong, L.H.; Mhaisalkar, S.G. Physical and electrical properties of single Zn2SnO4 nanowires. Electrochem. Solid State Lett. 2010, 14, K5. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef]
- Hou, C.; Hu, B.; Zhu, J. Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts 2018, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, C. Decolorization of methylene blue with sol via UV irradiation photocatalytic degradation. Int. J. Photoenergy 2010, 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Cavalcante, R.P.; Dantas, R.F.; Bayarri, B.; González, O.; Giménez, J.; Esplugas, S.; Junior, A.M. Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: Primary active species and intermediates. Appl. Catal. B 2016, 194, 111–122. [Google Scholar] [CrossRef]
- Chen, D.; Ray, A.K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 2001, 56, 1561–1570. [Google Scholar] [CrossRef]
- Deng, Q.; Duan, X.; Ng, D.H.L.; Tang, H.; Yang, Y.; Kong, M.; Wu, Z.; Cai, W.; Wang, G. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 2012, 4, 6030–6037. [Google Scholar] [CrossRef] [PubMed]
ZTO NW | 1 at% Ag-ZTO NW | 3 at% Ag-ZTO NW | |
---|---|---|---|
Resistivity | 6.01 × 10−5 Ω·m | 2.1 × 10−4 Ω·m | 4.3 × 10−4 Ω·m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.-C.; Hsieh, T.-L.; Yang, S.-M.; Chao, S.-C.; Lu, K.-C. Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles. Nanomaterials 2022, 12, 1201. https://doi.org/10.3390/nano12071201
Su J-C, Hsieh T-L, Yang S-M, Chao S-C, Lu K-C. Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles. Nanomaterials. 2022; 12(7):1201. https://doi.org/10.3390/nano12071201
Chicago/Turabian StyleSu, Jia-Chi, Tsung-Lin Hsieh, Shu-Meng Yang, Shao-Chun Chao, and Kuo-Chang Lu. 2022. "Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles" Nanomaterials 12, no. 7: 1201. https://doi.org/10.3390/nano12071201
APA StyleSu, J. -C., Hsieh, T. -L., Yang, S. -M., Chao, S. -C., & Lu, K. -C. (2022). Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles. Nanomaterials, 12(7), 1201. https://doi.org/10.3390/nano12071201