In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of the CNTs
2.3. Adsorption Study
2.4. Characterization
3. Results and Discussion
3.1. Synthesis of CNTs on Steel Slag Particles by CVD
3.1.1. Effect of Growth Time
3.1.2. Effect of Synthesis Temperature
3.1.3. Effect of the Acetylene Flow Rate
3.2. Adsorption Performance
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.2.3. Adsorption Thermodynamics
3.2.4. Effect of Initial pH
3.2.5. Comparison and Adsorption Mechanism
Heavy Metal | Adsorbent Material | Adsorbent Dosage (mg·L−1) | Adsorption Capacity (mg·g−1) | pH | Reference |
---|---|---|---|---|---|
Pb(II) | Acidified MWCNTs | 500 | 166 | 9 | [52] |
β-Cyclodextrin modified magnetic GO | 200 | 279.21 | 7 | [53] | |
Thiol-functionalized multiwalled carbon nanotubes | 200 | 72.4 | 5.5 | [54] | |
Silica-coated magnetic nanocomposites | 4000 | 14.9 | 6 | [55] | |
Acid-treated multiwalled carbon nanotubes | 500 | 97.08 | 5 | [19] | |
Nano silica spheres | 1000 | 262 | 5 | [56] | |
Steel slag | 250 | 53.2 | 6.5 | This work | |
Saccharomyces cerevisiae | 250 | 238 | 6.5 | [57] | |
SS@CNTs | 200 | 427.26 | 6.5 | This work | |
Cu(II) | Acid-treated CNTs | 1000 | 82.64 | 6.5 | [58] |
Bacillus | 2000 | 75.3 | 7 | [59] | |
β-cyclodextrin-modified magnetic GO | 200 | 51.29 | 7 | [53] | |
Acid-treated multiwalled carbon nanotubes | 500 | 24.49 | 5 | [19] | |
Double-oxidized multiwalled carbon nanotubes | 667 | 14 | 4.2 | [21] | |
Steel slag | 250 | 21.33 | 6.5 | This work | |
SS@CNTs | 200 | 132.79 | 6.5 | This work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Rashdi, B.A.M.; Johnson, D.J.; Hilal, N. Removal of heavy metal ions by nanofiltration. Desalination 2013, 315, 2–17. [Google Scholar] [CrossRef]
- Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 2007, 58, 49–52. [Google Scholar] [CrossRef]
- Yu, G.; Lu, Y.; Guo, J.; Patel, M.; Bafana, A.; Wang, X.; Qiu, B.; Jeffryes, C.; Wei, S.; Guo, Z.; et al. Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv. Compos. Hybrid Mater. 2017, 1, 56–78. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Ismael, M.; Yaita, T.; El-Safty, S.A.; Shiwaku, H.; Okamoto, Y.; Suzuki, S. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 2013, 222, 67–76. [Google Scholar] [CrossRef]
- Ni, B.J.; Huang, Q.S.; Wang, C.; Ni, T.Y.; Sun, J.; Wei, W. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 2019, 219, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Ramos, V.C.; Utrilla, J.R.; Sanchez, A.R.; Ramon, M.V.L.; Polo, M.S. Marble Waste Sludges as Effective Nanomaterials for Cu (II) Adsorption in Aqueous Media. Nanomaterials 2021, 11, 2305. [Google Scholar] [CrossRef]
- Bezzina, J.P.; Ruder, L.R.; Dawson, R.; Ogden, M.D. Ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted sewage sludge—Resin screening in weak acid media. Water Res. 2019, 158, 257–267. [Google Scholar] [CrossRef]
- Ates, N.; Uzal, N. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ. Sci. Pollut. Res. Int. 2018, 25, 22259–22272. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 2019, 230, 783–793. [Google Scholar] [CrossRef]
- Ouni, L.; Ramazani, A.; Taghavi Fardood, S. An overview of carbon nanotubes role in heavy metals removal from wastewater. Front. Chem. Sci. Eng. 2019, 13, 274–295. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Zhrani, G.; Kosa, S.A. Simultaneous removal of copper(II), lead(II), zinc(II) and cadmium(II) from aqueous solutions by multi-walled carbon nanotubes. Comptes Rendus Chim. 2012, 15, 398–408. [Google Scholar] [CrossRef]
- Al-Sareji, O.J.; Abdulredha, M.; Mubarak, H.A.; Grmasha, R.A.; Alnowaishry, A.; Kot, P.; Al-Khaddar, R.; AlKhayyat, A. Copper removal from water using carbonized sawdust. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1058, 012015. [Google Scholar] [CrossRef]
- Jellali, S.; Azzaz, A.A.; Jeguirim, M.; Hamdi, H.; Mlayah, A. Use of lignite as a low-cost material for cadmium and copper removal from aqueous solutions: Assessment of adsorption characteristics and exploration of involved mechanisms. Water 2021, 13, 164. [Google Scholar] [CrossRef]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar] [CrossRef]
- Li, H.; Wei, C.; Zhang, D.; Pan, B. Adsorption of bisphenol A on dispersed carbon nanotubes: Role of different dispersing agents. Sci. Total Environ. 2019, 655, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Leiva, E. Enhanced Heavy Metal Removal from Acid Mine Drainage Wastewater Using Double-Oxidized Multiwalled Carbon Nanotubes. Molecules 2019, 25, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.R.; Correia, A.A.; Rasteiro, M.G. Heavy Metals Removal from Aqueous Solutions by Multiwall Carbon Nanotubes: Effect of MWCNTs Dispersion. Nanomaterials 2021, 11, 2082. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, F.; Yang, P.; Yang, Y.; Hu, J.; Wei, J.; Yu, Q. In Situ Synthesis of Diatomite–Carbon Nanotube Composite Adsorbent and Its Adsorption Characteristics for Phenolic Compounds. J. Chem. Eng. Data 2018, 64, 360–371. [Google Scholar] [CrossRef]
- Yang, L.; Wen, T.; Wang, L.; Miki, T.; Bai, H.; Lu, X.; Yu, H.; Nagasaka, T. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. J. Environ. Manage. 2019, 231, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, X.; Zhou, S.; Zuo, X.; Wang, C. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J. Water Process Eng. 2022, 47, 102666. [Google Scholar] [CrossRef]
- Bing, L.; Biao, T.; Zhen, M.; Hanchi, C.; Hongbo, L. Physical and Chemical Properties of Steel Slag and Utilization Technology of Steel Slag at Home and Abroad. IOP Conf. Ser. Earth Environ. Sci. 2019, 242, 032012. [Google Scholar] [CrossRef]
- Azira, A.A.; Suriani, A.B.; Rusop, M. Carbon nanotubes formation from Fe/Ni/Mg by camphor oil decomposition. J. Ceram. Soc. Jpn. 2011, 119, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Nasibulin, A.G.; Koltsova, T.; Nasibulina, L.I.; Anoshkin, I.V.; Semencha, A.; Tolochko, O.V.; Kauppinen, E.I. A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Mater. 2013, 61, 1862–1871. [Google Scholar] [CrossRef]
- Wang, K.; Qian, C.; Wang, R. The properties and mechanism of microbial mineralized steel slag bricks. Constr. Build. Mater. 2016, 113, 815–823. [Google Scholar] [CrossRef]
- See, C.H.; Dunens, O.M.; MacKenzie, K.J.; Harris, A.T. Process Parameter Interaction Effects during Carbon Nanotube Synthesis in Fluidized Beds. Ind. Eng. Chem. Res. 2008, 47, 7686–7692. [Google Scholar] [CrossRef]
- Chekin, F.; Raoof, J.-B.; Bagheri, S.; Hamid, S.B.A. Fabrication of Chitosan-Multiwall Carbon Nanotube Nanocomposite Containing Ferri/Ferrocyanide: Application for Simultaneous Detection ofD-Penicillamine and Tryptophan. J. Chin. Chem. Soc. 2012, 59, 1461–1467. [Google Scholar] [CrossRef]
- Soltani, R.; Sani, M.A.F.; Mohaghegh, F. The Effect of Temperature and N2:C2H2Flow Rate on the Growth of Carbon Nanotubes Synthesized by CCVD of Acetylene on Alumina–Zirconia Matrix. Fuller. Nanotub. Carbon Nanostructures 2014, 23, 245–252. [Google Scholar] [CrossRef]
- Allaedini, G.; Tasirin, S.M.; Aminayi, P. Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of NiMgO. J. Alloy. Compd. 2015, 647, 809–814. [Google Scholar] [CrossRef]
- Yang, H.; Cahela, D.R.; Tatarchuk, B.J. A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal. Chem. Eng. Sci. 2008, 63, 2707–2716. [Google Scholar] [CrossRef]
- Chang, B.-K.; Lu, Y.; Tatarchuk, B.J. Microfibrous entrapment of small catalyst or sorbent particulates for high contacting-efficiency removal of trace contaminants including CO and H2S from practical reformates for PEM H2–O2 fuel cells. Chem. Eng. J. 2006, 115, 195–202. [Google Scholar] [CrossRef]
- Qin, J.; Wang, C.; Yao, Z.; Ma, Z.; Cui, X.; Gao, Q.; Wang, Y.; Wang, Q.; Wei, H. Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers. Nanotechnology 2021, 32, 285702. [Google Scholar] [CrossRef]
- Ducati, C.; Alexandrou, I.; Chhowalla, M.; Amaratunga, G.A.J.; Robertson, J. Temperature selective growth of carbon nanotubes by chemical vapor deposition. J. Appl. Phys. 2002, 92, 3299–3303. [Google Scholar] [CrossRef]
- Chaisitsak, S.; Nukeaw, J.; Tuantranont, A. Parametric study of atmospheric-pressure single-walled carbon nanotubes growth by ferrocene–ethanol mist CVD. Diam. Relat. Mater. 2007, 16, 1958–1966. [Google Scholar] [CrossRef]
- Tripathi, N.; Mishra, P.; Harsh, H.; Islam, S.S. Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: An in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas. Appl. Nanosci. 2014, 5, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Tofighy, M.A.; Mohammadi, T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 2011, 185, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lasheen, M.R.; El-Sherif, I.Y.; Sabry, D.Y.; El-Wakeel, S.T.; El-Shahat, M.F. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination Water Treat. 2013, 53, 3521–3530. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Taher, M.M.; Bajpai, A.K.; Heibati, B.; Tyagi, I.; Asif, M.; Agarwal, S.; Gupta, V.K. Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem. Eng. J. 2015, 279, 344–352. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z.; Li, N.J.; Huang, C.; Xie, G.X. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J. 2012, 203, 423–431. [Google Scholar] [CrossRef]
- Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; Reis, M.A.L.d. Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study. Appl. Clay Sci. 2019, 172, 57–64. [Google Scholar] [CrossRef]
- Muthukumaran, C.; Sivakumar, V.M.; Thirumarimurugan, M. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng. 2016, 63, 354–362. [Google Scholar] [CrossRef]
- Cristiano, E.; Hu, Y.-J.; Siegfried, M.; Kaplan, D.; Nitsche, H. A Comparison of Point of Zero Charge Measurement Methodology. Clays Clay Miner. 2011, 59, 107–115. [Google Scholar] [CrossRef]
- Huifen, Y.; Wen, M.; Weina, Z.; Zhiyong, W. Steel Slag as Multi-functional Material for Removal of Heavy Metal Ions in Wastewater. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19–20 February 2011; pp. 1287–1290. [Google Scholar]
- Lim, J.W.; Chew, L.H.; Choong, T.S.Y.; Tezara, C.; Yazdi, M.H. Utilizing steel slag in environmental application—An overview. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 012067. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, N.; Pires, M.A.F.; Bressiani, J.C. Use of steel converter slag as nickel adsorber to wastewater treatment. Waste Manag. 2001, 21, 631–635. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Bassyouni, M.; Mansi, A.E.; Elgabry, A.; Ibrahim, B.A.; Kassem, O.A.; Alhebeshy, R. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys. A 2019, 126, 1–33. [Google Scholar] [CrossRef]
- Farghali, A.A.; Abdel Tawab, H.A.; Abdel Moaty, S.A.; Khaled, R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostructure Chem. 2017, 7, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.-X.; Shao, W.-J.; Sun, W.; Kou, Y.-L.; Li, X.; Yang, H.-P. One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions. Appl. Surf. Sci. 2018, 459, 544–553. [Google Scholar] [CrossRef]
- Qu, G.; Zhou, J.; Liang, S.; Li, Y.; Ning, P.; Pan, K.; Ji, W.; Tang, H. Thiol-functionalized multi-walled carbon nanotubes for effective removal of Pb(II) from aqueous solutions. Mater. Chem. Phys. 2022, 278, 125668. [Google Scholar] [CrossRef]
- Nicola, R.; Costişor, O.; Ciopec, M.; Negrea, A.; Lazău, R.; Ianăşi, C.; Picioruş, E.-M.; Len, A.; Almásy, L.; Szerb, E.I.; et al. Silica-Coated Magnetic Nanocomposites for Pb2+ Removal from Aqueous Solution. Appl. Sci. 2020, 10, 2726. [Google Scholar] [CrossRef] [Green Version]
- Manyangadze, M.; Chikuruwo, N.M.H.; Narsaiah, T.B.; Chakra, C.S.; Charis, G.; Danha, G.; Mamvura, T.A. Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon 2020, 6, e05309. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Zeng, Z.; Zhou, X.; Luo, W.; Shi, X.; Wang, Q.; Deng, H.; Du, Y. Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. J. Hazard. Mater. 2017, 324, 365–372. [Google Scholar] [CrossRef]
- Tofighy, M.A.; Mohammadi, T. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination Water Treat. 2016, 57, 15384–15396. [Google Scholar] [CrossRef]
- Lei, D.-y.; Liu, Z.; Peng, Y.-h.; Liao, S.-b.; Xu, H. Biosorption of copper, lead and nickel on immobilized Bacillus coagulans using experimental design methodologies. Ann. Microbiol. 2013, 64, 1371–1384. [Google Scholar] [CrossRef]
Material | Chemical Composition/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
CaO | Fe2O3 | SiO2 | MgO | Al2O3 | Na2O | f-CaO 1 | LOI 2 | Others | |
Steel slag | 38.72 | 33.98 | 9.08 | 5.87 | 2.91 | 0.22 | 3.78 | 3.23 | 2.21 |
Time (min) | T0 (°C) | Tf (°C) | Yield of Carbon (wt%) |
---|---|---|---|
15 | 461 | 640 | 13 |
30 | 465 | 657 | 23 |
45 | 463 | 672 | 36 |
60 | 463 | 673 | 39 |
Samples | SBET (m2·g−1) | Vt (cm3·g−1) | DA (nm) |
---|---|---|---|
Steel slag | 2.05 | 0.0041 | 6.78 |
SS@CNTs-15 | 36.75 | 0.0404 | 3.9 |
SS@CNTs-30 | 43.19 | 0.061 | 4.48 |
SS@CNTs-45 | 49.85 | 0.0639 | 5.57 |
SS@CNTs-60 | 43.07 | 0.0635 | 5.9 |
Temperature (°C) | T0 (°C) | Tf (°C) | Yield of Carbon (wt%) |
---|---|---|---|
500 | 445 | 629 | 4.5 |
600 | 463 | 672 | 36 |
700 | 488 | 675 | 17 |
800 | 489 | 685 | 15 |
Samples | SBET (m2·g−1) | Vt (cm3·g−1) | DA (nm) |
---|---|---|---|
SS@CNT-500 | 15.89 | 0.0247 | 5.5 |
SS@CNT-600 | 49.85 | 0.0639 | 5.57 |
SS@CNT-700 | 15.74 | 0.0364 | 8.26 |
SS@CNT-800 | 11.07 | 0.0195 | 6.5 |
C2H2:N2 | T0 (°C) | Tf (°C) | Yield of Carbon (wt%) |
---|---|---|---|
100:800 | 461 | 659 | 17 |
200:800 | 463 | 672 | 36 |
300:800 | 463 | 670 | 38 |
Samples | SBET (m2·g−1) | Vt (cm3·g−1) | DA (nm) |
---|---|---|---|
SS@CNT-100 | 25.63 | 0.058 | 7.89 |
SS@CNT-200 | 49.85 | 0.061 | 4.48 |
SS@CNT-300 | 37.92 | 0.0727 | 14.63 |
Heavy Metal | qe,exp (mg·g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe,cal (mg·g−1) | ka | R2 | qe,cal (mg·g−1) | kb | R2 | ||
Pb(II) | 427.26 | 186.64 | 0.0423 | 0.876 | 432.9 | 0.0008 | 0.980 |
Cu(II) | 132.79 | 83.22 | 0.0298 | 0.912 | 137.93 | 0.0009 | 0.99 |
Heavy Metal | Temperature | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qm | KL | R2 | KF | n | R2 | ||
Pb(II) | 288 K | 492.61 | 0.238 | 0.9982 | 250.88 | 6.588 | 0.9571 |
298 K | 515.46 | 0.348 | 0.9989 | 287.88 | 7.297 | 0.9312 | |
318 K | 537.63 | 0.598 | 0.9961 | 332.23 | 8.178 | 0.9175 | |
Cu(II) | 288 K | 163.13 | 0.0367 | 0.9953 | 28.24 | 3.047 | 0.9644 |
298 K | 172.41 | 0.0448 | 0.9953 | 36.62 | 3.419 | 0.9481 | |
318 K | 185.53 | 0.063 | 0.9962 | 50.34 | 3.949 | 0.9671 |
Heavy Metal | T (K) | ΔH0 (kJ·mol−1) | ΔS0 (J·mol−1·K−1) | ΔG0 (kJ·mol−1) | R2 |
---|---|---|---|---|---|
Pb(II) | 288 | 23.15 | 112.95 | −9.334 | 0.9921 |
298 | −10.597 | ||||
318 | −12.742 | ||||
Cu(II) | 288 | 13.68 | 54.58 | −2.029 | 0.9997 |
298 | −2.59 | ||||
318 | −3.669 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Li, F.; Wang, B.; Niu, Y.; Wei, J.; Yu, Q. In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. Nanomaterials 2022, 12, 1199. https://doi.org/10.3390/nano12071199
Yang P, Li F, Wang B, Niu Y, Wei J, Yu Q. In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. Nanomaterials. 2022; 12(7):1199. https://doi.org/10.3390/nano12071199
Chicago/Turabian StyleYang, Pengfei, Fangxian Li, Beihan Wang, Yanfei Niu, Jiangxiong Wei, and Qijun Yu. 2022. "In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution" Nanomaterials 12, no. 7: 1199. https://doi.org/10.3390/nano12071199
APA StyleYang, P., Li, F., Wang, B., Niu, Y., Wei, J., & Yu, Q. (2022). In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. Nanomaterials, 12(7), 1199. https://doi.org/10.3390/nano12071199