Date-Leaf Carbon Particles for Green Enhanced Oil Recovery
Abstract
:1. Introduction
2. Background of the Study
2.1. Carbon Nanoparticle in EOR
2.2. Nanoparticle Preparation
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Date-Leaf Carbon Nanoparticles and Carboxylic Acid Functionalization
3.3. Characterization
3.4. IFT Measurement
3.5. Contact Angle Measurement
3.6. Influence of Pressure and Temperature on IFT
3.7. Phase Behavior Study
3.8. Core Flood Experiments
4. Results and Discussion
4.1. Field Emission Scanning Electron Microscopy
4.2. Transmission Electron Microscopy
4.3. XPS Analysis
4.4. BET Analysis
4.5. Raman Spectroscopy
4.6. IFT Measurements and Optimum Concentration at 25 °C
4.7. Wettability Measurement and Influence of Temperature and Pressure on IFT
4.8. Optimum Salinity of Green Surfactant
4.9. Core Flooding
4.9.1. Functionalized DLCNP in Smart Water Flooding
4.9.2. DLCNP in Green Surfactant Flooding
4.9.3. Non-Functionalized DLCNP with CNT
5. Conclusions
- A carbon nanoparticle was prepared from a cheap source via a direct method (i.e., pyrolysis at 850 °C and ball milling for 15 h). The surface of the nanocarbon was carboxylic acid-functionalized using acid treatment. The prepared carbons were characterized using FE-SEM, TEM, EDS, XPS, Raman spectroscopy, and BET.
- The particle size of the carboxylic acid-functionalized carbon ranged from 50 to 159 nm.
- The IFT values between the Arabian light crude oil and different concentrations of aqueous DLCNP were measured. The DLCNP reduced the IFT by 41% from 14.46 to 8.56 dyne/cm at 25 °C.
- Only a minimal influence of pressure and temperature on the IFT between the DLCNP solutions and Arabian light crude oil was observed.
- Core flood experiments with Berea sandstone confirmed that a concentration of 800 ppm carboxylated DLCNP mixed with distilled water could recover 9% of the residual oil and 49% of the OIIP.
- An 800 ppm sample of non-functionalized DLCNP was blended with 0.5 wt% non-ionic green surfactant APG and 2 wt% NaCl brine; this produced 45% tertiary oil and 89% OIIP recovery. This formulation performed better than the commercially available CNT.
6. Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Circumference of ring C, mm | 60.1 |
53.8384846 |
Sample | H2O | Oil | 100 ppm | 200 ppm | 400 ppm | 600 ppm | 800 ppm |
---|---|---|---|---|---|---|---|
ρ@ 25 °C g/cm3 | 0.9970 | 0.8286 | 0.99718 | 0.99722 | 0.99725 | 0.99730 | 0.99735 |
@ 25 °C g/cm3 | - | - | 0.16858 | 0.16862 | 0.16865 | 0.16870 | 0.16875 |
DLCNP Concentration (mg/L) | IFT (dyne/cm) |
---|---|
0 | 23.00 |
200 | 12.50 |
400 | 10.50 |
600 | 8.50 |
800 | 8.60 |
Temperature (°C) | IFT (dyne/cm) |
---|---|
25.5 | 13.91 |
35.0 | 14.76 |
45.0 | 15.79 |
81.3 | 17.09 |
Pressure (psi) | IFT (dyne/cm) |
---|---|
3000 | 29.62 |
4000 | 30.33 |
5000 | 28.31 |
References
- Green, D.W.; Willhite, P. Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 1998; ISBN 1555630774. [Google Scholar]
- Said, M.; Haq, B.; Al Shehri, D.; Rahman, M.M.; Muhammed, N.S.; Mahmoud, M. Modification of Xanthan Gum for a High-Temperature and High-Salinity Reservoir. Polymers 2021, 13, 4212. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, N.S.; Haq, M.B.; Al-Shehri, D.; Rahaman, M.M.; Keshavarz, A.; Hossain, S.M.Z. Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery. Polymers 2020, 12, 2429. [Google Scholar] [CrossRef] [PubMed]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects; Springer: Berlin/Heidelberg, Germany, 2019; Volume 9, ISBN 0123456789. [Google Scholar]
- Atta, D.Y.; Negash, B.M.; Yekeen, N.; Habte, A.D. A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J. Mol. Liq. 2021, 321, 114888. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. A review on surfactant retention on rocks: Mechanisms, measurements, and influencing factors. Fuel 2021, 293, 120459. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Trefry, M.G.; Park, J.; Liu, K.; Haq, B.; Johnston, C.D.; Volk, H. Interactions of Microbial-Enhanced Oil Recovery Processes. Transp. Porous Media 2011, 87, 77–104. [Google Scholar] [CrossRef]
- Haq, B.; Liu, J.; Liu, K.; Al Shehri, D. The role of biodegradable surfactant in microbial enhanced oil recovery. J. Pet. Sci. Eng. 2020, 189, 106688. [Google Scholar] [CrossRef]
- Haq, B.; Liu, J.; Liu, K. Green enhanced oil recovery (GEOR). APPEA J. 2017, 57, 150. [Google Scholar] [CrossRef]
- Haq, B. The role of microbial products in green enhanced oil recovery: Acetone and butanone. Polymers 2021, 13, 1946. [Google Scholar] [CrossRef]
- Haq, B. Green enhanced oil recovery for carbonate reservoirs. Polymers 2021, 13, 3269. [Google Scholar] [CrossRef]
- Haq, B. The Role of Green Surfactants in Microbial Enhanced Oil Recovery. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2013. [Google Scholar]
- Whitby, C.P.; Fornasiero, D.; Ralston, J. Effect of adding anionic surfactant on the stability of Pickering emulsions. J. Colloid Interface Sci. 2009, 329, 173–181. [Google Scholar] [CrossRef]
- Qiao, W.; Cui, Y.; Zhu, Y.; Cai, H. Dynamic interfacial tension behaviors between Guerbet betaine surfactants solution and Daqing crude oil. Fuel 2012, 102, 746–750. [Google Scholar] [CrossRef]
- Sharma, T.; Suresh Kumar, G.; Sangwai, J.S. Enhanced oil recovery using oil-in-water (o/w) emulsion stabilized by nanoparticle, surfactant and polymer in the presence of NaCl. Geosyst. Eng. 2014, 17, 195–205. [Google Scholar] [CrossRef]
- Zhang, H.; Nikolov, A.; Wasan, D. Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuels 2014, 28, 3002–3009. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel 2017, 206, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, H.; Baig, M.K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M.R.; Burda, M. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 2018, 9, 39–48. [Google Scholar] [CrossRef]
- Nourafkan, E.; Haruna, M.A.; Gardy, J.; Wen, D. Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. J. Appl. Polym. Sci. 2019, 136, 47205. [Google Scholar] [CrossRef]
- Kadhum, M.J.; Swatske, D.P.; Chen, C.; Resasco, D.E.; Harwell, J.H.; Shiau, B. Propagation of carbon nanotube hybrids through porous media for advancing oilfield technology. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 13–15 April 2015; Volume 2, pp. 1037–1045. [Google Scholar] [CrossRef]
- Wang, S.; Chen, C.; Kadum, M.J.; Shiau, B.J.; Harwell, J.H. Enhancing foam stability in porous media by applying nanoparticles. J. Dispers. Sci. Technol. 2018, 39, 734–743. [Google Scholar] [CrossRef]
- Kanj, M.Y.; Rashid, M.H.; Giannelis, E.P. Industry first field trial of reservoir nanoagents. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25–28 September 2011; Volume 3, pp. 1883–1892. [Google Scholar] [CrossRef]
- Soleimani, H.; Yahya, N.; Baig, M.; Khodapanah, L.; Sabet, M.; Burda, M.; Oechsner, A.; Awang, M. Synthesis of Carbon Nanotubes for Oil-water Interfacial Tension Reduction. Oil Gas Res. 2015, 1, 1000104. [Google Scholar] [CrossRef]
- Belhaj, A.F.; Elraies, K.A.; Janjuhah, H.T.; Tasfy, S.F.H.; Yahya, N.; Abdullah, B.; Umar, A.A.; Ghanem, O.B.; Alnarabiji, M.S. Electromagnetic waves-induced hydrophobic multiwalled carbon nanotubes for enhanced oil recovery. J. Pet. Explor. Prod. Technol. 2019, 9, 2667–2670. [Google Scholar] [CrossRef] [Green Version]
- Betancur, S.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Franco, C.A.; Jiménez, J.; Manrique, E.J.; Quintero, H.; Cortés, F.B. Effect of Magnetic Iron Core-Carbon Shell Nanoparticles in Chemical Enhanced Oil Recovery for Ultralow Interfacial Tension Region. Energy Fuels 2019, 33, 4158–4168. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, Y.; Pu, W.; Wei, B.; He, Y.; Zhang, Y. Enhanced oil recovery using a potential nanofluid based on the halloysite nanotube/silica nanocomposites. In Proceedings of the SPE International Conference on Oilfield Chemistry, Galveston, TX, USA, 8–9 April 2019; Volume 2019. [Google Scholar] [CrossRef]
- Haq, B.; Aziz, M.A.; Hakeem, A.S.; Mheibesh, Y.G.; Ahmed, M.A.; Al Shehri, D. Date-Leaf Carbon Micro-Nanostructured Particles DLCMNPs for Enhance Oil Recovery. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March 2019. [Google Scholar]
- Yap, S.H.K.; Chan, K.K.; Tjin, S.C.; Yong, K.T. Carbon allotrope-based optical fibers for environmental and biological sensing: A review. Sensors 2020, 20, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahammad, A.J.S.; Odhikari, N.; Shah, S.S.; Hasan, M.M.; Islam, T.; Pal, P.R.; Ahmed Qasem, M.A.; Aziz, M.A. Porous tal palm carbon nanosheets: Preparation, characterization and application for the simultaneous determination of dopamine and uric acid. Nanoscale Adv. 2019, 1, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Ahammad, A.J.S.; Pal, P.R.; Shah, S.S.; Islam, T.; Mahedi Hasan, M.; Qasem, M.A.A.; Odhikari, N.; Sarker, S.; Kim, D.M.; Abdul Aziz, M. Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J. Electroanal. Chem. 2019, 832, 368–379. [Google Scholar] [CrossRef]
- Peng, L.M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442. [Google Scholar] [CrossRef]
- Kong, T.; Hao, L.; Wei, Y.; Cai, X.; Zhu, B. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Prolif. 2018, 51, e12488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.P.; Zhai, Z.B.; Huang, K.J.; Zhang, Y.Y. Energy storage applications of biomass-derived carbon materials: Batteries and supercapacitors. New J. Chem. 2017, 41, 11456–11470. [Google Scholar] [CrossRef]
- Kweon, D.H.; Baek, J.B. Edge-Functionalized Graphene Nanoplatelets as Metal-Free Electrocatalysts for Dye-Sensitized Solar Cells. Adv. Mater. 2019, 31, 1804440. [Google Scholar] [CrossRef]
- Aziz, M.A.; Chowdhury, I.R.; Mazumder, M.A.J.; Chowdhury, S. Highly porous carboxylated activated carbon from jute stick for removal of Pb2+ from aqueous solution. Environ. Sci. Pollut. Res. 2019, 26, 22656–22669. [Google Scholar] [CrossRef]
- Dimov, D.; Amit, I.; Gorrie, O.; Barnes, M.D.; Townsend, N.J.; Neves, A.I.S.; Withers, F.; Russo, S.; Craciun, M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018, 28, 1705183. [Google Scholar] [CrossRef]
- Kewalramani, M.A.; Syed, Z.I. Application of nanomaterials to enhance microstructure and mechanical properties of concrete. Int. J. Integr. Eng. 2018, 10, 98–104. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, J.; Wang, F.; Zhao, L.; Zhang, Q.; Xu, W.; He, S. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Mater. Des. 2021, 201, 109518. [Google Scholar] [CrossRef]
- Lu, Y.; Yue, Y.; Ding, Q.; Mei, C.; Xu, X.; Wu, Q.; Xiao, H.; Han, J. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Sun, H.; Lu, Y.; Wang, S.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Fu, Q.; Han, J. Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13, 59142–59153. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, S.; Zhu, S.; Huang, C.; Yue, Y.; Mei, C.; Xu, X.; Xia, C. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Appl. Mater. Interfaces 2019, 11, 44624–44635. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Li, X.; Xu, Y.; Zheng, L.; Su, C.; Liu, B. Atomically Dispersed Fe-Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Lett. 2021, 6, 379–386. [Google Scholar] [CrossRef]
- Wang, C.; Yan, B.; Chen, Z.; You, B.; Liao, T.; Zhang, Q.; Lu, Y.; Jiang, S.; He, S. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 25773–25795. [Google Scholar] [CrossRef]
- Han, J.; Wang, H.; Yue, Y.; Mei, C.; Chen, J.; Huang, C.; Wu, Q.; Xu, X. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon N. Y. 2019, 149, 1–18. [Google Scholar] [CrossRef]
- Jiao, Y.; Lu, K.; Lu, Y.; Yue, Y.; Xu, X.; Xiao, H.; Li, J.; Han, J. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose 2021, 28, 4295–4311. [Google Scholar] [CrossRef]
- Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S. Habib High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 2011, 6, 863. [Google Scholar] [CrossRef] [Green Version]
- Basha, S.I.; Aziz, M.A.; Maslehuddin, M.; Ahmad, S. Preparation, Characterization, and Evaluation of the Anticorrosion Performance of Submicron/Nanocarbon from Jute Sticks. Chem. Asian J. 2021, 16, 3914–3930. [Google Scholar] [CrossRef]
- Basha, S.I.; Kumar, A.M.; Maslehuddin, M.; Ahmad, S.; Rahman, M.M.; Shameem, M.; Hakeem, A.S.; Aziz, M.A. Preparation of submicron-/nano-carbon from heavy fuel oil ash and its corrosion resistance performance as composite epoxy coating. J. Clean. Prod. 2021, 319, 128735. [Google Scholar] [CrossRef]
- Pentimalli, M.; Bellusci, M.; Padella, F. High-Energy Ball Milling as a General Tool for Nanomaterials Synthesis and Processing. In Handbook of Mechanical Nanostructuring; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 663–679. [Google Scholar]
- Haque, M.A.; Hasan, M.M.; Islam, T.; Razzak, M.A.; Alharthi, N.H.; Sindan, A.; Karim, M.R.; Basha, S.I.; Aziz, M.A.; Ahammad, A.J.S. Hollow Reticular Shaped Highly Ordered Rice Husk Carbon for the Simultaneous Determination of Dopamine and Uric Acid. Electroanalysis 2020, 32, 1957–1970. [Google Scholar] [CrossRef]
- Aziz, M.A.; Theleritis, D.; Al-Shehri, M.O.; Ahmed, M.I.; Qamaruddin, M.; Hakeem, A.S.; Helal, A.; Qasem, M.A.A. A Simple and Direct Preparation of a Substrate-Free Interconnected Nanostructured Carbon Electrode from Date Palm Leaflets for Detecting Hydroquinone. ChemistrySelect 2017, 2, 4787–4793. [Google Scholar] [CrossRef]
- Heo, H.S.; Park, H.J.; Park, Y.K.; Ryu, C.; Suh, D.J.; Suh, Y.W.; Yim, J.H.; Kim, S.S. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour. Technol. 2010, 101, S91–S96. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Akanda, M.R.; Hossain, D.; Haque, M.A.; Buliyaminu, I.A.; Basha, S.I.; Oyama, M.; Aziz, M.A. Preparation and Characterization of Bhant Leaves-derived Nitrogen-doped Carbon and its Use as an Electrocatalyst for Detecting Ketoconazole. Electroanalysis 2020, 32, 528–535. [Google Scholar] [CrossRef]
- Khan, M.Y.; Khan, A.; Adewole, J.K.; Naim, M.; Basha, S.I.; Aziz, M.A. Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation. J. Nat. Gas Sci. Eng. 2020, 75, 103156. [Google Scholar] [CrossRef]
- Aziz, M.A.; Yang, H. Surfactant and polymer-free electrochemical micropatterning of carboxylated multi-walled carbon nanotubes on indium tin oxide electrodes. Chem. Commun. 2008, 826–828. [Google Scholar] [CrossRef]
- ASTM D971–99a; Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method. Theory of Interfacial Measurement Using the Du Noüy Ring Technique. ASTM International: West Conshohocken, PA, USA, 2002; Volume 44, pp. 1–7.
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Biesinger, M.C. X-ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/p/about-author.html (accessed on 17 March 2022).
- Adenuga, A.A.; Tanguay, R.L.; Remcho, V.T. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int. J. Biomed. Nanosci. Nanotechnol. 2013, 3, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- El-Shafey, E.I.; Ali, S.N.F.; Al-Busafi, S.; Al-Lawati, H.A.J. Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J. Environ. Chem. Eng. 2016, 4, 2713–2724. [Google Scholar] [CrossRef]
- Haq, B.; Al Shehri, D.; Al Damegh, A.; Al Muhawesh, A.; Albusaad, M.; Lardhi, M.; Barri, A.; Iddris, A.; Muhammed, N.; Hossain, S.M.Z.; et al. The role of carbon nanotubes (CNTs) and carbon particles in green enhanced oil recovery (GEOR) for Arabian crude oil in sandstone core. APPEA J. 2020, 60, 133. [Google Scholar] [CrossRef]
Type of CNTs | Applications | Exp. Conditions | Particle Synthesis | Particle Characterization 1 | Key Findings | Refs. |
---|---|---|---|---|---|---|
MWCNTs | IFT reduction using pendant drop. | Ambient temperature and pressure | Chemical vapor deposition | XRD and TEM | A significant reduction in IFT was observed between the crude and CNTs at the highest surface tensions. | [23] |
MWCNTs | Influence of Electromagnetic (EM) waves on nanofluids in EOR. | Ambient temperature and pressure | - | - | EM-based hybrid MWCNTs recorded optimum nanofluids flow rate of 2 mL/min. EM wave could enhance recovery efficiency by 24.5% ROIP as oil increased from 36.6% to 61.1%. | [24] |
MWCNTs/Biopolymer | The effect of CNT in a harsh high-salinity high-temperature (HS-HT) environment in EOR. | High salinity and temperature | Free-radical copolymerization | NMR, GPC, FTIR, DSC and TEM. | After several syntheses, the negative polyelectrolyte and polyampholytic polymers served as the best candidate for MWCNTs/polymers in remote environments. | [19] |
Magnetic iron core-carbon shell nanoparticles | IFT studies via spinning drop. Adsorption reduction studies. EOR potential. | - | Hydrothermal process | SEM, DLS, N2-physisorption, XRD, XRS and BET analysis. | Achieved an optimum concentration with nano-additives. Nanoparticles reduced surfactant adsorption by 33%. A final oil recovery of 98% was achieved. | [25] |
Natural aluminosilicate nanomaterial halloysite nanotubes (HNTs)/SiO2 | Wettability alteration studies. EOR potential. | Ambient pressure and temperature | - | XRD, TGA, TEM and Zeta potential measurements. | A significant change in wettability from oil-wet to water-wet. Ultimate recovery of 39% was achieved. | [26] |
Date-leaf carbon micro-nano structured particles (DLCMNPs) functionalized with carboxylic acid | EOR application through IFT reduction via ring method. | Ambient temperature and pressure | Pulverization | FESEM, SEM, EDS, TEM and XRS. | IFT reduction between Arab crude oil and fluid samples formulations was achieved Nanoparticle decreased IFT from 14.46 to 8.56 dyne/cm. | [27] |
Salinity | Initial Vol | Final Oil | Microemulsion (mL) | Position | ||
---|---|---|---|---|---|---|
Oil (mL) | Slug (mL) | Oil (mL) | Slug (mL) | |||
0.0 | 4.55 | 4.55 | 0.00 | 3.50 | 5.60 | Upper |
1.0 | 4.55 | 4.55 | 3.10 | 4.50 | 1.50 | Upper |
2.0 | 4.55 | 4.55 | 1.00 | 4.30 | 3.80 | Upper |
3.0 | 4.55 | 4.55 | 3.50 | 4.50 | 1.10 | Upper |
4.0 | 4.50 | 4.50 | 2.96 | 2.94 | 3.10 | Middle |
5.0 | 4.55 | 4.55 | 3.76 | 3.74 | 1.60 | Middle |
6.0 | 4.55 | 4.55 | 4.50 | 3.53 | 1.05 | Lower |
7.0 | 4.50 | 4.50 | 4.30 | 1.48 | 3.20 | Lower |
Cores | Length (cm) | Diameter (cm) | Pore Volume (cm3) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|---|
1 | 15.24 | 3.81 | 34.55 | 20.00 | 183.00 |
2 | 15.08 | 3.79 | 32.91 | 19.35 | 125.90 |
3 | 15.23 | 3.79 | 33.63 | 19.44 | 96.30 |
Cores | Formulation | Pressure (psi) | Temperature (°C) | Injection Rate (cm3/min) | Oil API @ 23 °C |
---|---|---|---|---|---|
1 | 800 ppm DLCNP (functionalized) + 2% NaCl | 1050 | 50 | 0.5 | 30 |
2 | 800 ppm DLCNP (Non-functionalized) + 0.5% APG + 2% NaCl | 1050 | 50 | 0.5 | 30 |
3 | 800 ppm CNT + 0.5% APG + 2% NaCl | 1050 | 50 | 0.5 | 30 |
Ball Milled (15 h) Carbon | Carboxylic Acid-Functionalized Carbon | |||
---|---|---|---|---|
Element | Peak Binding Energy (eV) | Atomic % | Peak Binding Energy (eV) | Atomic % |
C1s | 285.00 | 74.43 | 285.09 | 66.86 |
O1s | 531.93 | 20.40 | 532.03 | 29.74 |
Si2p | 102.92 | 3.31 | 104.80 | 3.40 |
Ca2p | 347.43 | 1.21 | - | - |
Mg1s | 1304.86 | 0.66 | - | - |
State of Carbon | BET Surface Area (m2/g) | Langmuir Surface Area (m2/g) | Average Pore Width (4V/A) (nm) | Total Volume (cm3/g) |
---|---|---|---|---|
Grinded carbon | 254.37 | 338.53 | 2.10 | 0.13 |
Ball milled carbon (15 h) | 331.32 | 446.98 | 3.67 | 0.30 |
Functionalized carbon | 73.67 | 98.69 | 3.16 | 0.05 |
Salinity NaCl (%) | Vol. of Oil Vo (mL) | Vol. of Surf. Vs (mL) | Vol. of Brine Vw (mL) | Solubilization of Oil (Po) | Solubilization of Brine (Pw) |
---|---|---|---|---|---|
0 | 4.55 | 0.02 | 1.03 | 200 | 45.15 |
1 | 1.45 | 0.02 | 0.03 | 63.74 | 1.20 |
2 | 3.55 | 0.02 | 0.23 | 156.04 | 9.99 |
3 | 1.05 | 0.02 | 0.03 | 46.15 | 1.20 |
4 | 1.54 | 0.02 | 1.54 | 68.40 | 68.38 |
5 | 0.79 | 0.02 | 0.79 | 34.68 | 34.65 |
6 | 0.05 | 0.02 | 0.98 | 2.20 | 42.96 |
7 | 0.20 | 0.03 | 2.98 | 8.89 | 132.33 |
Expt. No. | Core No. | Formulations | Secondary Oil Recovery (%) | Tertiary Oil Recovery (%) | Total Oil Recovery (%) |
---|---|---|---|---|---|
1 | 1 | Functionalized 800 mg/L (ppm) DLCNP and Distilled Water | 40 | 9 | 49 |
2 | 2 | Non-functionalized 800 mg/L (ppm) DLCNP, 0.5% APG 264 and 2% NaCl | 44 | 45 | 89 |
3 | 3 | 800 mg/L (ppm) CNT, 0.5% APG and 2% NaCl | 50 | 27 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, B.; Aziz, M.A.; Al Shehri, D.; Muhammed, N.S.; Basha, S.I.; Hakeem, A.S.; Qasem, M.A.A.; Lardhi, M.; Iglauer, S. Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. Nanomaterials 2022, 12, 1245. https://doi.org/10.3390/nano12081245
Haq B, Aziz MA, Al Shehri D, Muhammed NS, Basha SI, Hakeem AS, Qasem MAA, Lardhi M, Iglauer S. Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. Nanomaterials. 2022; 12(8):1245. https://doi.org/10.3390/nano12081245
Chicago/Turabian StyleHaq, Bashirul, Md. Abdul Aziz, Dhafer Al Shehri, Nasiru Salahu Muhammed, Shaik Inayath Basha, Abbas Saeed Hakeem, Mohammed Ameen Ahmed Qasem, Mohammed Lardhi, and Stefan Iglauer. 2022. "Date-Leaf Carbon Particles for Green Enhanced Oil Recovery" Nanomaterials 12, no. 8: 1245. https://doi.org/10.3390/nano12081245
APA StyleHaq, B., Aziz, M. A., Al Shehri, D., Muhammed, N. S., Basha, S. I., Hakeem, A. S., Qasem, M. A. A., Lardhi, M., & Iglauer, S. (2022). Date-Leaf Carbon Particles for Green Enhanced Oil Recovery. Nanomaterials, 12(8), 1245. https://doi.org/10.3390/nano12081245