Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries
Abstract
:1. Introduction
2. Basic Requirements of Electrode Materials
- ➢
- High gravimetric and volumetric capacities, although these features may not be critical for stationary storage of electricity.
- ➢
- Adequate electronic and ionic conductivities to support the electrochemical reactions and grant access to good rate capabilities.
- ➢
- Short diffusion lengths for the charge carriers to provide an enhanced charge transfer via a higher number of surface active sites in nanostructures, thus yielding shorter diffusion times for both electrons and ions to conveniently sustain high charge–discharge rates.
- ➢
- A low anode redox potential in combination with a high-potential cathode to provide high cell voltage. The anodic redox potential should not be too low to avoid incidental uneven metal plating, which detrimentally affects both safety (risk of internal short circuits) and performances (electrolyte consumption and power loss) of the cell.
- ➢
- High mechanical strength of the active materials and composite electrode coatings, especially when considerable volume variations are involved in the reactions.
- ➢
- High reversibility of the electrochemical reactions to maintain their specific charge and energy for hundreds of cycles in order to ensure cell durability and adequate power delivery.
- ➢
- Stability of the solid electrolyte interphase (SEI) on the anode to limit side reactions and ensure high Coulombic efficiency, preventing simultaneous rise of cell internal resistance with consequent loss of power.
- ➢
- Elevated thermal stability to support a wide window of operation temperatures and prevent earlier electrolyte degradation at the reacting electrode interfaces.
- ➢
- Abundant, non-toxic and environmentally friendly materials that can match with cost-effective electrode coating procedures.
- ➢
- Increased safety and optimized cell design to facilitate materials recovery/re-use at the time of battery disposal.
- ➢
- Low cost and efficient fabrication of both active materials and electrodes to enable potential large-scale use of corresponding cells.
3. Li-Ion Batteries
4. K-Ion Batteries
5. Iron Oxides for LIBs and KIBs
5.1. Li Insertion and Conversion of Iron Oxides
5.2. Design of Composite Iron Oxide/Carbon Nanostructures for LIBs
Anode | Electrolyte | Capacity | Stability |
---|---|---|---|
yolk-shell Fe2O3@C nanospheres [14] | 1 M LiPF6 1:1:1 (v/v/v) of ethylene carbonate (EC)/diethyl carbonate (DEC)/ethyl methyl carbonate (EMC) | 929 mAh g−1 at 0.1 A g−1 | 200 cycles |
Fe2O3@C [46] | -//- | 756 mAh g−1 at 1 A g−1 | 82.1 % retention after 600 cycles |
Hierarchical structure of C@Fe2O3 [45] | -//- | 1386 mAh g−1 at 0.1 C | 602 mAh g−1 after 100 cycles |
Nanocrystals Fe2O3@rGO [47] | -//- | 1175 mAh g−1 at 0.2 A g−1 | 993 mAh g−1 after 500 cycles at 1 A g−1 |
Silkworm-chrysalisnet-like Fe3O4/rGO [51] | -//- | 916.4 mAh g−1 at 0.5 A g−1 | 100 cycles |
Hollow Fe3O4/rGO [15] | -//- | 827.3 mAh g−1 at 0.5 A g−1 | 550 cycles |
Hollow Fe3O4/rGO [52] | - | 1222 mAh g−1 at 200 mA g−1 | 100 cycles |
SCNTs/Fe3O4 [54] | -//- | 674 mAh g−1 at 500 mA g−1 | 100 cycles |
Hollow Fe3O4/C microspheres [56] | -//- | ≈ 600 mAh g−1 at 1.0 A g−1 | 200 cycles |
5.3. Design of Composite Nanostructures through Iron Oxide-Based Materials and Carbon for KIBs
5.4. Challenges Ahead
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanpeene, V.; Villanova, J.; King, A.; Lestriez, B.; Maire, E.; Roué, L. Dynamics of the morphological degradation of Si-based anodes for Li-ion batteries characterized by in situ synchrotron X-ray tomography. Adv. Energy Mater. 2019, 9, 1803947. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Kumar Nayak, P.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Int. Ed. Chem. 2018, 57, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Chen, K.; Yin, L.; Sun, Z.; Li, F.; Cheng, H.-M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ma, H.; Zhang, G.; Li, X. Silica/carbon composites with controllable nanostructure from a facile one-step method for lithium-ion batteries application. Adv. Mater. Interfaces 2019, 6, 1801809. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, M.; Yang, X.; Yu, D.; Zeng, Y.; Wang, C.; Chen, G.; Du, F. Anode materials: Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1970073. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; et al. A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1800944. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Huggins, R.A. Lithium alloy negative electrodes. J. Power Sources 1999, 81–82, 13–19. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, E.; Liu, Q.; Guo, X.; Chen, W.; Chou, S.-L.; Dou, S.-X. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163–178. [Google Scholar]
- Shi, Q.; Zhou, Y.; Cheng, J.; Pan, Y.; Wu, Y.; Zhu, L.; Yuan, Z. Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode. Microporous Mesoporous Mater. 2022, 332, 111681. [Google Scholar] [CrossRef]
- Xie, Y.; Qiu, Y.; Tian, L.; Liu, T.; Su, X. Ultrafine hollow Fe3O4 anode material modified with reduced graphene oxides for high-power lithium-ion batteries. J. Alloys Compd. 2022, 894, 162384. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Mateti, S.; Ahmadabadi, V.G.; Glushenkov, A.M.; Chen, Y. K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 2017, 9, 3646–3654. [Google Scholar] [CrossRef]
- Peng, Q.; Guo, C.; Qi, S.; Sun, W.; Lv, L.-P.; Du, F.-H.; Wang, B.; Chen, S.; Wang, Y. Ultra-small Fe3O4 nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes. RSC Adv. 2021, 11, 1261–1270. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, X.; Yang, C.; Lian, Y.; Razzaq, A.A.; Shah, R.; Guo, J.; Zhao, X.; Peng, Y.; Deng, Z. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries. J. Alloys Compd. 2019, 777, 127–134. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Ramireddy, T.; Sharma, N.; Poddar, D.; Khalid, A.; Zhang, H.; Chen, Y.; Glushenkov, A.M. Understanding structure-function relationship in hybrid Co3O4-Fe2O3/C lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 2015, 7, 20736–20744. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Liu, H.; Xiong, Z.; Zhao, L.; Liu, S.; Huang, C.; Zhao, Y. Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem. Eng. J. 2019, 356, 746–755. [Google Scholar]
- Huang, Y.; Li, Y.; Huang, R.; Ji, J.; Yao, J.; Xiao, S. One-pot hydrothermal synthesis of N-rGO supported Fe2O3 nanoparticles as a superior anode material for lithium-ion batteries. Solid State Ion. 2021, 368, 115693. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Minakshi, M.; Bahri, P.A.; Paul, S.; Kumari, P.; Divakaran, A.M.; Manjunatha, K.N. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 100298. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Malode, S.J.; Shetti, N.P.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 2018, 1, 182–187. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Zou, X.; Xiong, P.; Zhao, J.; Hu, J.; Liu, Z.; Xu, Y. Recent research progress in non-aqueous potassium-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 26495. [Google Scholar] [CrossRef]
- Anoopkumar, V.; Bibin, J.; Mercy, T.D. Potassium-ion batteries: Key to future large-scale energy storage? ACS Appl. Energy Mater. 2020, 3, 9478–9492. [Google Scholar]
- Hosaka, T.; Kubota, K.; Hameed, A.S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.C.; Bianchini, M.; Seo, D.-H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384. [Google Scholar] [CrossRef] [Green Version]
- Penki, T.R.; Shivakumara, S.; Minakshi, M.; Munichandraiah, N. Porous flower-like α-Fe2O3 nanostructure: A high performance anode material for lithium-ion batteries. Electrochim. Acta 2015, 167, 330–339. [Google Scholar] [CrossRef]
- Vargas, O.; Caballero, Á.; Morales, J. Enhanced electrochemical performance of maghemite/graphene nanosheets composite as electrode in half and full Li-ion cells. Electrochim. Acta 2014, 130, 551–558. [Google Scholar] [CrossRef]
- Hariharan, S.; Saravanan, K.; Balaya, P. Lithium storage using conversion reaction in maghemite and hematite. Electrochem. Solid-State Lett. 2010, 13, A132–A134. [Google Scholar] [CrossRef]
- Thackery, M.M.; David, W.I.F.; Goodenough, J.B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 < x < 2). Mater. Res. Bull. 1982, 17, 785–793. [Google Scholar]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J.-M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634. [Google Scholar] [CrossRef]
- Balaya, P.; Bhattacharyya, A.J.; Jamnik, J.; Zhukovskii, Y.F.; Kotomin, E.A.; Maier, J. Nano-ionics in the context of lithium batteries. J. Power Sources 2006, 159, 171–178. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Liu, Z.; Nam, K.-W.; Borkiewicz, O.J.; Cheng, J.; Hua, X.; Dunstan, M.T.; Yu, X.; Wiaderek, K.M.; Du, L.-S.; et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 2013, 12, 1130–1136. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X.; et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83. [Google Scholar] [CrossRef]
- Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 2003, 5, 5215–5220. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Abel, P.R.; Heller, A.; Mullins, C.B. α-Fe2O3 nanorods as anode material for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2885–2891. [Google Scholar] [CrossRef]
- Li, J.; Hwang, S.; Guo, F.; Li, S.; Chen, Z.; Kou, R.; Sun, K.; Sun, C.-J.; Gan, H.; Yu, A.; et al. Phase evolution of conversion-type electrode for lithium ion batteries. Nat. Commun. 2019, 10, 2224. [Google Scholar] [CrossRef] [PubMed]
- Valvo, M.; Asfaw, H.D.; Ojwang, D.O. 3-Impact of nanomaterials on Li-ion battery anodes. Front. Nanosci. 2021, 19, 55–98. [Google Scholar]
- Luo, J.; Xia, X.; Luo, Y.; Guan, C.; Liu, J.; Qi, X.; Ng, C.F.; Yu, T.; Zhang, H.; Fan, H.J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743. [Google Scholar] [CrossRef]
- Zhao, J.; Du, G. Hierarchical carbon@Fe2O3 composites with improved cycle life for advanced electrochemical performance. Ionics 2022, 28, 1679–1683. [Google Scholar] [CrossRef]
- Hou, X.; Kang, J.; Zhou, G.; Wang, J. Preparation of Fe2O3@C composite with octahedron-like Fe2O3 embedded in carbon framework as a superior anode for LIBs. Mater. Lett. 2022, 313, 131736. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Edge sites-driven accelerated kinetics in ultrafine Fe2O3 nanocrystals anchored graphene for enhanced alkali metal ion storage. Chem. Eng. J. 2022, 428, 131204. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, C.-H.; Shui, J.-L.; Xie, S. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Int. Ed. Chem. 2005, 44, 7085–7089. [Google Scholar] [CrossRef]
- Valvo, M.; Rehnlund, D.; Lafont, U.; Hahlin, M.; Edström, K.; Nyholm, L. The impact of size effects on the electrochemical behavior of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries. J. Mater. Chem. A 2014, 2, 9574–9586. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, C.; Cai, W.-D.; Qiao, W.-M.; Ling, L.-C.; Wang, J.-T. Integrated design of silkworm-chrysalis-net-like Fe3O4/rGO/mesoporous carbon composites as a high-performance anode material for lithium-ion batteries. Chem. Nanomater. Energy Biol. More 2022, 8, e202100490. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Q.; Hu, W.; Zhu, W.; Wei, Y.; Pan, K.; Zheng, M.; Pang, H. Preparation of hollow core-shell Fe3O4/Nitrogen-doped carbon nanocomposites for lithium-ion batteries. Molecules 2022, 27, 396. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Akbar, A.R.; Liu, Z.; Lu, Y.; Chen, Y.; Xiong, C. Nondestructive CNT chained Fe3O4 anode materials for high-performance Li-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128084. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.H.; Xie, W.F.; Li, J.B.; Rao, D.M.; Shao, M.F.; Zhang, B.S.; Wei, M. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater. 2018, 15, 308–314. [Google Scholar] [CrossRef]
- Zhang, W.; Bock, D.C.; Pelliccione, C.J.; Li, Y.; Wu, L.; Zhu, Y.; Marschilok, A.C.; Takeuchi, E.S.; Takeuchi, K.J.; Wang, F. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions. Adv. Energy Mater. 2016, 6, 1502471. [Google Scholar] [CrossRef]
- Deng, W.; Ci, S.; Li, H.; Wen, Z. One-step ultrasonic route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chem. Eng. J. 2017, 330, 995–1001. [Google Scholar] [CrossRef]
- Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M.R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192. [Google Scholar] [CrossRef]
- Palacin, M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef]
- Li, L.; Jacobs, R.; Gao, P.; Gan, L.; Wang, F.; Morgan, D.; Jin, S. Origin of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-F.; Noked, M.; Kozen, A.C.; Liu, C.; Zhao, O.; Gregorczyk, K.; Hu, L.; Lee, S.B.; Rubloff, G.W. Solid electrolyte lithium phosphorous oxynitride as a protective nanocladding layer for 3D high-capacity conversion electrodes. ACS Nano 2016, 10, 2693–2701. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Nanda, J.; Braun, P.V. Three-dimensionally mesostructured Fe2O3 electrodes with good rate performance and reduced voltage hysteresis. Chem. Mater. 2015, 27, 2803–2811. [Google Scholar] [CrossRef]
- Valvo, M.; Liivat, A.; Eriksson, H.; Tai, C.-W.; Edström, K. Iron-based electrodes meet water-based preparation, fluorine-free electrolyte and binder: A chance for more sustainable lithium-ion batteries? Chem. Sustain. Energy Mater. 2017, 10, 2431–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berastegui, P.; Tai, C.-W.; Valvo, M. Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries. J. Power Sources 2018, 401, 386–396. [Google Scholar] [CrossRef]
- Komaba, S.; Mikumo, T.; Yabuuchi, N.; Ogata, A.; Yoshida, H.; Yomada, Y. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries. J. Electrochem. Soc. 2009, 157, A60–A65. [Google Scholar] [CrossRef]
- Valvo, M.; Lindgren, F.; Lafont, U.; Björefors, F.; Edström, K. Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. J. Power Sources 2014, 245, 967–978. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 2014, 5, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Do, G.X.; Paul, B.J.; Mathew, V.; Kim, J. Nanostructured iron ((iii) oxyhydroxide/(vi) oxide) composite as a reversible Li, Na and K-ion insertion electrode for energy storage devices. J. Mater. Chem. A 2013, 1, 7185–7190. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 3-Standard potentials of selected electrodes. Pure Appl. Chem. 1985, 57, 1129–1132. [Google Scholar] [CrossRef]
- Nightingale, E., Jr. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nakashima, H.; Morita, M.; Takasu, Y. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J. Electrochem. Soc. 1981, 128, 2552. [Google Scholar] [CrossRef]
- Lorger, S.; Usiskin, R.; Maier, J. Transport and charge carrier chemistry in lithium oxide. J. Electrochem. Soc. 2019, 166, A2215. [Google Scholar] [CrossRef]
- Farley, T.; Hayes, W.; Hull, S.; Hutchings, M.; Vrtis, M. Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction. J. Phys. Condens. Matter 1991, 3, 4761. [Google Scholar] [CrossRef]
- Zintl, E.; Harder, A.; Dauth, B. Gitterstruktur der oxyde, sulfide, selenide und telluride des lithiums, natriums und kaliums, Zeitschrift für Elektrochemie und angewandte physikalische. Chemie 1934, 40, 588–593. [Google Scholar]
- Touzain, P.; Brisse, F.; Caillet, M. Systèmes métaux alcalins–oxygène. 3ème Partie. Polymorphisme du monooxyde de potassium K2O. Can. J. Chem. 1970, 48, 3358–3361. [Google Scholar] [CrossRef]
- Tan, Q.; Li, P.; Han, K.; Liu, Z.; Li, Y.; Zhao, W.; He, D.; An, F.; Qin, M.; Qu, X. Chemically bubbled hollow FexO nanospheres anchored on 3D N-doped few-layer graphene architecture as performance-enhanced anode material for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 744–754. [Google Scholar] [CrossRef]
- Zaidi, S.D.A.; Wang, C.; Jin, Y.; Zhu, S.; Yuan, H.; Yang, Y.; Chen, J. Single-nozzle electrospun core-shell MoS2@FexOy@CNF anodes for lithium and potassium-ion batteries. J. Alloys Compd. 2020, 848, 156531. [Google Scholar] [CrossRef]
- Shi, X.; Qin, L.; Xu, G.; Guo, S.; Ma, S.; Zhao, Y.; Zhou, J.; Liang, S. β-FeOOH: A new anode for potassium-ion batteries. Chem. Commun. 2020, 56, 3713–3716. [Google Scholar] [CrossRef]
- Huang, B.; Tai, K.; Zhang, M.; Xiao, Y.; Dillon, S.J. Comparative study of Li and Na electrochemical reactions with iron oxide nanowires. Electrochem. Acta 2014, 118, 143–149. [Google Scholar] [CrossRef]
- Valvo, M.; Philippe, B.; Lindgren, F.; Tai, C.-W.; Edström, K. Insight into the processes controlling the electrochemical reactions of nanostructured iron oxide electrodes in Li- and Na-half cells. Electrochim. Acta 2016, 194, 74–83. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Lin, F.; Zhu, Y.; Yu, X.; Li, J.; Lin, R.; Nordlund, D.; Weng, T.-C.; Richards, R.M.; Yang, X.-Q.; et al. Sodiation kinetics of metal oxide conversion electrodes: A comparison study with lithiation. Nano Lett. 2015, 15, 5755–5763. [Google Scholar] [CrossRef]
- Jamnik, J.; Gaberscek, M. Li ion migration at the interfaces. MRS Bull. 2009, 34, 942–948. [Google Scholar] [CrossRef]
Guest Cation | Atomic Mass | Density (g cm−3) | Ionic Radius (Å) | Melting Point (°C) | E0 vs. SHE (V) | E0 vs. Li+/Li PC (V) | (σlim)ion in PC (S cm2 mol−1) | References |
---|---|---|---|---|---|---|---|---|
Li+ | 6.94 | 0.534 | 0.76 | 180.5 | −3.04 | 0 | 8.3 | [68,69,70] |
Na+ | 23.00 | 0.971 | 1.02 | 98 | −2.71 | 0.23 | 9.1 | [68,69,70] |
K+ | 39.10 | 0.862 | 1.38 | 63 | −2.93 | −0.09 | 15.2 | [68,69,70] |
Conversion Products | Molar Mass (g mol−1) | Density (g cm−3) | Molar Volume (cm3 mol−1) | σion at RT (S cm−1) | α-Fe2O3 Volume Change (%) | Fe3O4 Volume Change (%) | References |
---|---|---|---|---|---|---|---|
Li2O | 29.88 | 2.03 | 14.72 | ≈1 × 10−12 | ≈92 | ≈80 | [71,72] |
Na2O | 61.98 | 2.27 | 27.30 | n.a. | ≈216 | ≈193 | [73] |
K2O | 94.20 | 2.30 | 40.96 | n.a. | ≈351 | ≈316 | [74] |
Anode | Electrolyte | Capacity | Stability |
---|---|---|---|
Hybrid nano Fe2O3–Co3O4/C [16] | 0.75 M KPF6 in 1:1 (v/v) mixture of ethylene carbonate (EC)/diethyl carbonate (DEC). | 220 mAh g−1 at 50 mA g−1 | 50 cycles |
Hollow nanospheres of FexO@NFLG-240 [75] | 1 M KFSI in dimethoxyethane (DME). | 423 mAh g−1 at 50 mA g−1; 206 mAh g−1 at 2.0 A g−1; 140 mAh g−1 at 5.0 A g−1 | 100, 1000 and 5000 cycles, respectively. |
Core-shell hybrid MoS2@FexOy@CNF [76] | 1 M KPF6 in 1:1 (v/v) mixture of ethylene carbonate (EC)/dimethyl carbonate (DMC). | 320 mAh g−1 at 50 mA g−1 | 100 cycles |
β-FeOOH-SP carbon composite [77] | 1 M KFSI in ethylene carbonate (EC)/diethyl carbonate (DEC) as optimized electrolyte. Other salts and electrolyte formulations were also tested. | ≈170 mAh g−1 at 100 mA g−1; ≈75 mAh g−1 at 1.0 A g−1 | 200 cycles and 1000 cycles, respectively. |
Ultra-small Fe3O4@LCS-500 nanocomposite [17] | 0.8 M KPF6 in 1:1 (v/v) mixture of ethylene carbonate (EC)/diethyl carbonate (DEC). | 430 mAh g−1 at 100 mA g−1; 141 mAh g−1 at 2.0 A g−1 | 500 cycles and 1000 cycles, respectively. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valvo, M.; Floraki, C.; Paillard, E.; Edström, K.; Vernardou, D. Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. Nanomaterials 2022, 12, 1436. https://doi.org/10.3390/nano12091436
Valvo M, Floraki C, Paillard E, Edström K, Vernardou D. Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. Nanomaterials. 2022; 12(9):1436. https://doi.org/10.3390/nano12091436
Chicago/Turabian StyleValvo, Mario, Christina Floraki, Elie Paillard, Kristina Edström, and Dimitra Vernardou. 2022. "Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries" Nanomaterials 12, no. 9: 1436. https://doi.org/10.3390/nano12091436
APA StyleValvo, M., Floraki, C., Paillard, E., Edström, K., & Vernardou, D. (2022). Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. Nanomaterials, 12(9), 1436. https://doi.org/10.3390/nano12091436