Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte
Abstract
:1. Introduction
2. Experiments
2.1. Battery Design and Fabrication
2.2. Morphology and Structure Characterization
2.3. Electrochemical Tests
2.4. Simulation of Al in Different Solutions
3. Results and discussion
3.1. Battery Performance
3.2. Discharge Morphology Analysis
3.3. Electrochemical Properties
3.4. Energy Analysis
3.5. Activation Mechanism by Ga3+ Additives
4. Conclusions
- The addition of Ga3+ additive in the NaCl electrolyte significantly activated the Al anode, which increased the Al-air battery discharge voltage from 0.4228 V to 0.9734 V with 0.2 M GaCl3.
- In NaCl solution with 0.05 M Ga3+ additive, the addition of Ga3+ biased the surface charge of Al towards the activation direction, induced the enrichment of Cl- and then generated many active sites, thereby promoting the dissolution of the passivation film.
- When the added Ga3+ concentration was greater than or equal to 0.1 M, Ga3+ reacted with Al at specific activation sites, decomposing the oxide film and then generating metallic gallium to activate the Al anode.
- In the NaCl solution with 0.2 M Ga3+ additive, the generated metallic gallium formed an aluminum–gallium amalgam with Al, which detached the oxide film and avoided repassivation, resulting in the full activation of Al anode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haller, M.Y.; Carbonell, D.; Dudita, M.; Zenhäusern, D.; Häberle, A. Seasonal energy storage in aluminium for 100 percent solar heat and electricity supply. Energy Convers. Manag. X 2020, 5, 100017. [Google Scholar] [CrossRef]
- Das, S.K.; Mahapatra, S.; Lahan, H. Aluminium-ion batteries: Developments and challenges. J. Mater. Chem. A 2017, 5, 6347–6367. [Google Scholar] [CrossRef]
- Yuan, M.; Sun, Z.; Wu, Z.; Wang, D.; Yang, H.; Nan, C.; Li, H.; Zhang, W.; Sun, G. Tuning the oxygen vacancy of mixed multiple oxidation states nanowires for improving Li-air battery performance. J. Colloi. Interfaces Sci. 2022, 608, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Park, M.; Cho, J. Advanced Technologies for High-Energy Aluminum–Air Batteries. Adv. Mater. 2018, 31, 1804784. [Google Scholar] [CrossRef] [PubMed]
- Elia, G.A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J.; Passerini, S.; Hahn, R. An Overview and Future Perspectives of Aluminum Batteries. Adv. Mater. 2016, 28, 7564–7579. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiao, H.; Wang, M.; Song, W.; Xue, J.; Jiao, S. Current progresses and future prospects on aluminium–air batteries. Int. Mater. Rev. 2021, 1–31. [Google Scholar] [CrossRef]
- Yang, S. Design and analysis of aluminum/air battery system for electric vehicles. J. Power Sources 2002, 112, 162–173. [Google Scholar] [CrossRef]
- Chang, Z.; Xu, J.; Liu, Q.; Li, L.; Zhang, X. Recent Progress on Stability Enhancement for Cathode in Rechargeable Non-Aqueous Lithium-Oxygen Battery. Adv. Energy Mater. 2015, 5, 1500633. [Google Scholar] [CrossRef]
- Goel, P.; Dobhal, D.; Sharma, R.C. Aluminum–air batteries: A viability review. J. Energy Storage 2020, 28, 101287. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 2102917. [Google Scholar] [CrossRef]
- Akmal, M.; Othman, R.; Ani, M.H. Comparative electrochemical performance characteristics of aluminium-air cell employing seawater and NaCl electrolytes. Adv. Mater. Res. 2013, 701, 314–318. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J.; Gao, J.; Li, Q. Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions. J. Power Sources 2014, 253, 419–423. [Google Scholar] [CrossRef]
- Smoljko, I.; Gudić, S.; Kuzmanić, N.; Kliškić, M. Electrochemical properties of aluminium anodes for Al/air batteries with aqueous sodium chloride electrolyte. J. Appl. Electrochem. 2012, 42, 969–977. [Google Scholar] [CrossRef]
- Guo, L.; Tan, J.; Yang, H.; el Bakri, Y.; Kaya, S.; Leng, S.; Yang, Y.; Shi, W. Triblock copolymer pluronic F68 as a corrosion inhibitor for aluminum-air battery: An electrochemical and in silico study. Int. J. Electrochem. Sci. 2019, 14, 11480–11490. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, H.; Fan, L.; Hong, Q.; Leng, J.; Chen, C. Performance of Al-air batteries based on Al–Ga, Al–In and Al–Sn alloy electrodes. J. Electrochem. Soc. 2015, 162, A2116. [Google Scholar] [CrossRef]
- Yi, Y.; Huo, J.; Wang, W. Electrochemical Properties of Al–based Solid Solutions Alloyed by Element Mg, Ga, Zn and Mn under the Guide of First Principles. Fuel Cells 2017, 17, 723–729. [Google Scholar] [CrossRef]
- Senel, E.; Nisancioglu, K. Role of dealloying on the electrochemical behaviour of aluminium alloyed with trace amounts of gallium. Corros. Sci. 2014, 85, 436–444. [Google Scholar] [CrossRef]
- Gudic, S.; Smoljko, I.; Kliskic, M. Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution. Mater. Chem. Phys. 2010, 121, 561–566. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Qin, K.; Zou, J.; Qin, K.; Ban, C.; Cui, J.; Nagaumi, H. The role of gallium and indium in improving the electrochemical characteristics of Al–Mg–Sn-based alloy for Al–air battery anodes in 2 M NaCl solution. J. Mater. Sci. 2020, 55, 11545–11560. [Google Scholar] [CrossRef]
- Gudić, S.; Radošević, J.; Smoljko, I.; Kliškić, M. Cathodic breakdown of anodic oxide film on Al and Al–Sn alloys in NaCl solution. Electrochim. Acta 2005, 50, 5624–5632. [Google Scholar] [CrossRef]
- El Shayeb, H.A.; el Wahab, F.M.A.; el Abedin, S.Z. Electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions containing stannous ions. Corros. Sci. 2001, 43, 655–669. [Google Scholar] [CrossRef]
- Despić, A.R.; Dražić, D.M.; Purenović, M.M.; Ciković, N. Electrochemical properties of aluminium alloys containing indium, gallium and thallium. J. Appl. Electrochem. 1976, 6, 527–542. [Google Scholar] [CrossRef]
- Tuck, C.; Hunter, J.A.; Scamans, G.M. The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 1987, 134, 2970. [Google Scholar] [CrossRef]
- Zolriasatein, A.; Shokuhfar, A. Homogenizing annealing heat treatment effects on the microstructure, hardness and thermal behavior of Al12Mg17 complex metallic alloy. Mater. Des. 2015, 75, 17–23. [Google Scholar] [CrossRef]
- Carroll, W.M.; Breslin, C.B. Activation of aluminium in halide solutions containing ‘activator ions’. Corros. Sci. 1992, 33, 1161–1177. [Google Scholar] [CrossRef]
- Flamini, D.O.; Saidman, S.B.; Bessone, J.B. Aluminium activation produced by gallium. Corros. Sci. 2006, 48, 1413–1425. [Google Scholar] [CrossRef]
- El Shayeb, H.A.; el Wahab, F.M.A.; el Abedin, S.Z. Effect of gallium ions on the electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions. Corros. Sci. 2001, 43, 643–654. [Google Scholar] [CrossRef]
- Breslin, C.B.; Carroll, W.M. The activation of aluminium by activator elements. Corros. Sci. 1993, 35, 197–203. [Google Scholar] [CrossRef]
- Breslin, C.B.; Carroll, W.M. The electrochemical behaviour of aluminium activated by gallium in aqueous electrolytes. Corros. Sci. 1992, 33, 1735–1746. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, B. Tl-Cl-water system, Ge-water system, In-water system and Ga-water system E-PH diagram. J. Kunming Univ. Sci. Technol. (Nat. Sci.) 1980, 2, 67–91. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Bernales, V.S.; Marenich, A.V.; Contreras, R.; Cramer, C.J.; Truhlar, D.G. Quantum mechanical continuum solvation models for ionic liquids. J. Phys. Chem. B 2012, 116, 9122–9129. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, Y.; Zhu, W.; Jiang, W.; Zhang, M.; Xia, J.; Yin, S.; Li, H. A DFT study of the extractive desulfurization mechanism by [BMIM]+[AlCl4]− ionic liquid. J. Phys. Chem. B 2015, 119, 5995–6009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Nam, H.; Srolovitz, D.J. Effect of material properties on liquid metal embrittlement in the Al–Ga system. Acta Mater. 2009, 57, 1546–1553. [Google Scholar] [CrossRef]
- Leung, K. First principles, explicit interface studies of oxygen vacancy and chloride in alumina films for corrosion applications. J. Electrochem. Soc. 2021, 168, 031511. [Google Scholar] [CrossRef]
- Bratsch, S.G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Burlakova, A.G.; Shilkin, S.P.; Kravchenko, O.V.; Dremova, N.N.; Kravchenko, S.E.; Ivanov, A.V.; Bulychev, B.M. Activation of metallic aluminum by tin and gallium chlorides in oxidation with water. Inorg. Mater. 2012, 48, 238–243. [Google Scholar] [CrossRef]
- Niu, H.; Bonati, L.; Piaggi, P.M.; Parrinello, M. Ab initio phase diagram and nucleation of gallium. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Hugo, R.C.; Hoagland, R.G. The kinetics of gallium penetration into aluminum grain boundaries—In situ TEM observations and atomistic models. Acta Mater. 2000, 48, 1949–1957. [Google Scholar] [CrossRef]
- Reboul, M.C.; Gimenez, P.; Rameau, J.J. A Proposed Activation Mechanism for Al Anodes. Corrosion-Us 1984, 40, 366–371. [Google Scholar] [CrossRef]
- Kazum, O.; Kannan, M.B.; Beladi, H.; Timokhina, I.B.; Hodgson, P.D.; Khoddam, S. Aqueous corrosion performance of nanostructured bainitic steel. Mater. Des. 2014, 54, 67–71. [Google Scholar] [CrossRef]
- Flamini, D.O.; Cunci, L.; Saidman, S.B. Electrochemical characterisation of gallium–aluminium amalgams. Mater. Chem. Phys. 2008, 108, 33–38. [Google Scholar] [CrossRef]
- Jia, C.C.W.; Haichao, L. Effect of Cl−-ion on the impedance of passive-film-covered electrodes. J. Chin. Soc. Corros. Prot. 1989, 9, 261–270. [Google Scholar]
- Wu, Z.; Zhang, H.; Guo, C.; Zou, J.; Qin, K.; Ban, C.; Nagaumi, H. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes. J. Solid. State Electr. 2019, 23, 2483–2491. [Google Scholar] [CrossRef]
- Di Palma, T.M.; Migliardini, F.; Gaele, M.F.; Corbo, P. Aluminum-air Batteries with solid hydrogel electrolytes: Effect of pH upon cell performance. Anal. Lett. 2021, 54, 28–39. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, L.; Yang, S.B.; Zhang, C.; Li, Y.Z.; Bai, D.; Huang, G.Z. Passivation behaviors of 6082 aluminium alloy under stress corrosion process. Mater. Corros. 2021, 72, 564–574. [Google Scholar] [CrossRef]
- McCafferty, E. Sequence of steps in the pitting of aluminum by chloride ions. Corros. Sci. 2003, 45, 1421–1438. [Google Scholar] [CrossRef]
Alloy | Al | Fe | Si | Ti | Ca | K | V | Cl | S |
---|---|---|---|---|---|---|---|---|---|
Conc.(%) | 99.513 | 0.157 | 0.134 | 0.087 | 0.046 | 0.023 | 0.019 | 0.013 | 0.007 |
Additives | Voltage(V) | Discharge Capacity (mAh gAl−1) | Energy Density (W·h·kgAl−1) |
---|---|---|---|
Blank | 0.4228 | 2530.79 | 1028.44 |
0.05 M GaCl3 | 0.4939 | 2458.03 | 1063.77 |
0.1 M GaCl3 | 0.6329 | 2242.90 | 1428.10 |
0.15 M GaCl3 | 0.7869 | 1993.28 | 1685.18 |
0.2 M GaCl3 | 0.9734 | 1582.42 | 1762.22 |
0.3 M GaCl3 | 1.0019 | 1370.32 | 1635.20 |
0.5 M GaCl3 | 1.0021 | 1162.79 | 1428.57 |
Additives | Ecorr (V vs. SCE) | Rp (Ω cm2) | ba (mV dec−1) | bc (mV dec−1) | icorr (μA cm−2) |
---|---|---|---|---|---|
Blank | −0.984 | 4133.5 | 338.2 | −143.0 | 10.6 |
0.05 M GaCl3 | −0.995 | 1474.4 | 244.4 | −160.3 | 28.5 |
0.1 M GaCl3 | −1.016 | 1332.1 | 209.3 | −171.8 | 30.8 |
0.15 M GaCl3 | −1.042 | 658.2 | 178.0 | −166.7 | 56.8 |
0.2 M GaCl3 | −1.324 | 25.0 | 134.5 | −305.5 | 1622 |
Additives | Rs (Ω cm2) | CPE (Ω−1 cm−2 sn) | n | Rct (Ω cm2) | R (Ω cm2) | L (H cm2) | W (Ω−1 cm−2) |
---|---|---|---|---|---|---|---|
Blank | 7.613 | 3.813 × 10−5 | 0.88 | 11410 | — | — | — |
0.05 M GaCl3 | 3.338 | 7.217 × 10−5 | 0.94 | 970.1 | — | 9.178 × 10−2 | — |
0.1 M GaCl3 | 2.878 | 7.804 × 10−5 | 0.93 | 833.5 | 8848 | 9.402 × 10−3 | — |
0.15 M GaCl3 | 2.700 | 1.081 × 10−4 | 0.94 | 690.8 | 16130 | 2.430 × 10−4 | — |
0.2 M GaCl3 | 2.826 | 2.263 × 10−3 | 0.74 | 37.60 | 18.64 | 1.269 × 10−6 | 0.2910 |
Additives | E (kJ) | ΔE (kJ) |
---|---|---|
Blank | −636,344.57 | 0 |
0.05 M GaCl3 | −636,341.16 | 3.41 |
0.1 M GaCl3 | −636,338.79 | 5.78 |
0.15 M GaCl3 | −636,335.91 | 8.66 |
0.2 M GaCl3 | −636,331.97 | 12.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Liu, Y.; Tong, Y.; Qin, Z.; Wu, Z.; Hu, W. Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte. Nanomaterials 2022, 12, 1336. https://doi.org/10.3390/nano12081336
Gu Y, Liu Y, Tong Y, Qin Z, Wu Z, Hu W. Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte. Nanomaterials. 2022; 12(8):1336. https://doi.org/10.3390/nano12081336
Chicago/Turabian StyleGu, Yingying, Yingjie Liu, Yunwei Tong, Zhenbo Qin, Zhong Wu, and Wenbin Hu. 2022. "Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte" Nanomaterials 12, no. 8: 1336. https://doi.org/10.3390/nano12081336
APA StyleGu, Y., Liu, Y., Tong, Y., Qin, Z., Wu, Z., & Hu, W. (2022). Improving Discharge Voltage of Al-Air Batteries by Ga3+ Additives in NaCl-Based Electrolyte. Nanomaterials, 12(8), 1336. https://doi.org/10.3390/nano12081336