Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Proposed Plasmonic Nanoantenna on a Metal Film
3.2. Strong Coupling between the Antenna and Single QD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mabuchi, H.; Doherty, A.C. Cavity quantum electrodynamics: Coherence in context. Science 2002, 298, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J.M.J.; Marchetti, F.; Szymańska, M.; André, R.; Staehli, J. Bose—Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2014, 78, 013901. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Ying, Y.; Wang, X.; Yang, L.; Zu, S.; Du, B.; Han, T.; Li, B.; Yu, L.; Wu, J.; et al. Observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl. 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Bitton, O.; Gupta, S.N.; Haran, G. Quantum dot plasmonics: From weak to strong coupling. Nanophotonics 2019, 8, 559–575. [Google Scholar] [CrossRef]
- Hennessy, K.; Badolato, A.; Winger, M.; Gerace, D.; Atatüre, M.; Gulde, S.; Fält, S.; Hu, E.L.; Imamoğlu, A. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 2007, 445, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Monroe, C. Quantum information processing with atoms and photons. Nature 2002, 416, 238–246. [Google Scholar] [CrossRef]
- Lo, H.-K.; Chau, H.F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef] [Green Version]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Kéna-Cohen, S.; Forrest, S.R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 2010, 4, 371–375. [Google Scholar] [CrossRef]
- Chen, W.; Beck, K.M.; Bücker, R.; Gullans, M.; Lukin, M.D.; Tanji-Suzuki, H.; Vuletić, V. All-optical switch and transistor gated by one stored photon. Science 2013, 341, 768–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reithmaier, J.P.; Sęk, G.; Loffler, A.S.; Hofmann, C.P.; E Kuhn, S.; Reitzenstein, S.; Keldysh, L.V.; Kulakovskii, V.D.; Reinecke, T.L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs, H.M.; Rupper, G.; Ell, C.; Shchekin, O.B.; Deppe, D.G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004, 432, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Dong, H.; He, J.; Forsberg, E.; Jin, Y.; He, S. Normal-incidence-excited strong coupling between excitons and symmetry-protected quasi-bound states in the continuum in silicon nitride–WS2 heterostructures at room temperature. J. Phys. Chem. Lett. 2020, 11, 4631–4638. [Google Scholar] [CrossRef]
- Kravtsov, V.; Khestanova, E.; Benimetskiy, F.A.; Ivanova, T.; Samusev, A.K.; Sinev, I.S.; Pidgayko, D.; Mozharov, A.M.; Mukhin, I.S.; Lozhkin, M.S.; et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl. 2020, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Jin, Y.; Dong, H.; Guo, T.; He, J.; He, S. Enhancing single photon emission through quasi-bound states in the continuum of monolithic hexagonal boron nitride metasurface. J. Phys. Mater. 2021, 4, 035001. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J.A.; Genet, C.; Samorì, P.; Ebbesen, T.W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 2016, 16, 4368–4374. [Google Scholar] [CrossRef] [Green Version]
- Brongersma, M.L.; Shalaev, V.M. The case for plasmonics. Science 2010, 328, 440–441. [Google Scholar] [CrossRef]
- Griep, M.H.; Bedford, N.M. Amino-acid conjugated protein–Au nanoclusters with tuneable fluorescence properties. J. Phys. Mater. 2020, 3, 045002. [Google Scholar] [CrossRef]
- Wu, Y.-D. High efficiency multi-functional all-optical logic gates based on MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators. Prog. Electromagn. Res. 2021, 170, 79–95. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Yang, J.; De Leon, I.; Zaccaria, R.P.; Qian, H.; Chen, H.; Wang, G.; Wang, A.T. Biosensing performance of a plasmonic-grating-based nanolaser. Prog. Electromagn. Res. 2021, 171, 159–169. [Google Scholar] [CrossRef]
- Schlather, A.E.; Large, N.; Urban, A.S.; Nordlander, P.; Halas, N.J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Johansson, G.; Johansson, P.; Antosiewicz, T.J.; Käll, M.; Shegai, T. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 2013, 3, 3074. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T.J.; Käll, M.; Shegai, T. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 2015, 114, 157401. [Google Scholar] [CrossRef]
- Groß, H.; Hamm, J.M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906. [Google Scholar] [CrossRef] [Green Version]
- Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, S.; Gu, Y.; Chen, J. Brightening and guiding single-photon emission by plasmonic waveguide–slit structures on a metallic substrate. Laser Photonics Rev. 2019, 13, 1900025. [Google Scholar] [CrossRef]
- Hatab, N.A.; Hsueh, C.-H.; Gaddis, A.L.; Retterer, S.T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952–4955. [Google Scholar] [CrossRef]
- Chen, X.; Lindquist, N.C.; Klemme, D.J.; Nagpal, P.; Norris, D.; Oh, S.-H. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing. Nano Lett. 2016, 16, 7849–7856. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xia, J.; Fang, M.; Bao, F.; Cao, G.; Shen, J.; Evans, J.; He, S. Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity. Nat. Commun. 2018, 9, 1705. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Tang, J.; Bao, F.; Sun, Y.; Fang, M.; Cao, G.; Evans, J.; He, S. Turning a hot spot into a cold spot: Polarization-controlled Fano-shaped local-field responses probed by a quantum dot. Light Sci. Appl. 2020, 9, 166. [Google Scholar] [CrossRef]
- Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.-C.; Lee, Y.-H.; Kéna-Cohen, S.; Menon, V.M. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Xing, Y.; Sun, Y.; Liu, Z.; He, S. Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film. Nanomaterials 2022, 12, 1440. https://doi.org/10.3390/nano12091440
Cao S, Xing Y, Sun Y, Liu Z, He S. Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film. Nanomaterials. 2022; 12(9):1440. https://doi.org/10.3390/nano12091440
Chicago/Turabian StyleCao, Shun, Yuxin Xing, Yuwei Sun, Zhenchao Liu, and Sailing He. 2022. "Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film" Nanomaterials 12, no. 9: 1440. https://doi.org/10.3390/nano12091440
APA StyleCao, S., Xing, Y., Sun, Y., Liu, Z., & He, S. (2022). Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film. Nanomaterials, 12(9), 1440. https://doi.org/10.3390/nano12091440