Research on In Situ Thermophysical Properties Measurement during Heating Processes
Abstract
:1. Introduction
2. Method for Continuous Thermal Properties Measurement for Biomass Particles
2.1. Measurement Principle of the TET Method
2.2. One-Dimensional Heat Transfer Model
2.3. Continuous Thermal Characterization Based on the TET
2.3.1. Mechanism of the Continuous in Situ Thermal Characterization
2.3.2. A typical Experimental Setup
3. Results and Discussions
3.1. Verification of the Method and Experimental Setup
3.2. Thermal Characterization for Corn Leaves during Heating
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 2009, 13, 167–178. [Google Scholar] [CrossRef]
- Wankhade, R.D.; Bhattacharya, T. Pyrolysis oil an emerging alternate fuel for future (Review). J. Pharmacogn. Phytochem. 2017, 6, 239–243. [Google Scholar]
- Whalen, J.; Xu, C.C.; Shen, F.; Kumar, A.; Eklund, M.; Yan, J. Sustainable biofuel production from forestry, agricultural and waste biomass feedstocks. Appl. Energy 2017, 198, 281–283. [Google Scholar] [CrossRef]
- Williams, C.L.; Westover, T.L.; Emerson, R.M.; Tumuluru, J.S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Res. 2016, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mettler, M.S.; Vlachos, D.G.; Dauenhauer, P.J. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci. 2012, 5, 7797–7809. [Google Scholar] [CrossRef]
- Bridgwater, T. Challenges and Opportunities in Fast Pyrolysis of Biomass: Part I. Johns. Matthey Technol. Rev. 2018, 62, 118–130. [Google Scholar] [CrossRef]
- Rezaei, H.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Lau, A. A numerical and experimental study on fast pyrolysis of single woody biomass particles. Appl. Energy 2017, 198, 320–331. [Google Scholar] [CrossRef]
- Zhang, K.; You, C.; Li, Y. Experimental and numerical investigation on the pyrolysis of single coarse lignite particles. Korean J. Chem. Eng. 2012, 29, 540–548. [Google Scholar] [CrossRef]
- Lu, L.; Yi, W.; Zhang, D.L. 3ω method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 2001, 72, 2996–3003. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wang, X.; Guo, J. Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 2006, 39, 3362–3370. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Wang, T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 2007, 101, 063537. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Xu, S.; Li, C.; Dong, H.; Wang, X. Thermal and electrical conduction in 6.4 nm thin gold films. Nanoscale 2013, 5, 4652–4656. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Thermal and Electrical Conduction in Ultrathin Metallic Films: 7 nm down to Sub-Nanometer Thickness. Small 2013, 9, 2585–2594. [Google Scholar] [CrossRef]
- Liu, G.; Xu, S.; Cao, T.T.; Lin, H.; Tang, X.; Zhang, Y.Q.; Wang, X. Thermally induced increase in energy transport capacity of silkworm silks. Biopolymers 2014, 101, 1029–1037. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Xie, H. Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer 2014, 55, 6373–6380. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology 2013, 24, 415706. [Google Scholar] [CrossRef] [Green Version]
- Karamati, A.; Hunter, N.; Lin, H.; Zobeiri, H.; Xu, S.; Wang, X. Strong linearity and effect of laser heating location in transient photo/electrothermal characterization of micro/nanoscale wires. Int. J. Heat Mass Transf. 2022, 198, 123393. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.; Wang, T.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring. ACS Omega 2017, 2, 3931–3944. [Google Scholar] [CrossRef] [Green Version]
- Pandecha, K.; Pongtornkulpanich, A.; Sukchai, S.; Suriwong, T. Thermal properties of corn husk fiber as insulation for flat plate solar collector. Int. J. Renew. Energy 2015, 10, 27–36. [Google Scholar]
- Czajkowski, Ł.; Wojcieszak, D.; Olek, W.; Przybył, J. Thermal properties of fractions of corn stover. Constr. Build. Mater. 2019, 210, 709–712. [Google Scholar] [CrossRef]
- Kustermann, M.; Scherer, R.; Kutzbach, H.D. Thermal conductivity and diffusivity of shelled corn and grain. J. Food Process Eng. 1981, 4, 137–153. [Google Scholar] [CrossRef]
- Chang, C.S. Thermal Conductivity of Wheat, Corn, and Grain Sorghum as Affected by Bulk Density and Moisture Content. Trans. ASAE 1986, 29, 1447–1450. [Google Scholar] [CrossRef]
- Hays, R.L. The thermal conductivity of leaves. Planta 1975, 125, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.L.; Westover, T.L.; Petkovic, L.M.; Matthews, A.C.; Stevens, D.M.; Nelson, K.R. Determining Thermal Transport Properties for Softwoods Under Pyrolysis Conditions. ACS Sustain. Chem. Eng. 2017, 5, 1019–1025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Xu, S.; Zhang, Z.; Lin, H. Research on In Situ Thermophysical Properties Measurement during Heating Processes. Nanomaterials 2023, 13, 119. https://doi.org/10.3390/nano13010119
Xu C, Xu S, Zhang Z, Lin H. Research on In Situ Thermophysical Properties Measurement during Heating Processes. Nanomaterials. 2023; 13(1):119. https://doi.org/10.3390/nano13010119
Chicago/Turabian StyleXu, Chenfei, Shen Xu, Zhi Zhang, and Huan Lin. 2023. "Research on In Situ Thermophysical Properties Measurement during Heating Processes" Nanomaterials 13, no. 1: 119. https://doi.org/10.3390/nano13010119
APA StyleXu, C., Xu, S., Zhang, Z., & Lin, H. (2023). Research on In Situ Thermophysical Properties Measurement during Heating Processes. Nanomaterials, 13(1), 119. https://doi.org/10.3390/nano13010119