Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization
Abstract
:1. Introduction
2. TET Technique
3. Differential TET Technique
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tom, T.E.; Ros, N.; Lopez-Pinto, J.M.; Asensi, J.; Andreu, J.; Bertomeu, J.; Puigdollers, V.C. Influence of Co-Sputtered Ag:Al Ultra-Thin Layers in Transparent V2O5/Ag:Al/AZO Hole-Selective Electrodes for Silicon Solar Cells. Materials 2020, 13, 4905. [Google Scholar] [CrossRef]
- Jilani, S.F.; Falade, O.; Wildsmith, T.; Reip, P.; Alomainy, A. A 60-GHz Ultra-Thin and Flexible Metasurface for Frequency-Selective Wireless Applications. Appl. Sci. Basel 2019, 9, 945. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Q.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Wang, Y.H.; Qiu, Y.; Ameri, S.; Jang, H.; Dai, Z.; Huang, Y.; Lu, N.S. Low-cost, mu m-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex. Electron. 2018, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.F.; Markvicka, E.; Malakooti, M.; Yan, J.; Hu, L.; Matyjaszewski, K.; Majidi, C. A Liquid-Metal-Elastomer Nanocomposite for Stretchable Dielectric Materials. Adv. Mater. 2019, 31, e1900663. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.W.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes. Adv. Mater. 2018, 30, e1800884. [Google Scholar] [CrossRef]
- Guerin, H.; Yoshihira, M.; Kura, H.; Ogawa, T.; Sato, T.; Maki, H. Coulomb blockade phenomenon in ultra-thin gold nanowires. J. Applied Physics 2012, 111, 054304. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kumar, S.; Lee, C.; Koo, B.; Chung, J.; Kim, W. Influence of the thickness on structural, magnetic and electrical properties of La0. 7Ca0.3MnO3 thin film. Curr. Appl. Phys. 2010, 10, 821–824. [Google Scholar] [CrossRef]
- Franz, R.; Wiedemann, G. Ueber die Wrme-Leitungsfhigkeit der Metalle. Annalen der Physik 1853.
- Lorenz, L. Ueber das Leitungsvermögen der Metalle für Wärme und Electricität. Ann. Der Phys. 2010, 249, 422–447. [Google Scholar] [CrossRef]
- Sondheimer, E.H. The Mean Free Path of Electrons in Metals. Adv. Phys. 2001, 50, 499–537. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Fujii, M.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 2005, 86, 1259. [Google Scholar] [CrossRef]
- Beloborodov, I.; Lopatin, A.; Hekking, F. Thermal transport in granular metals. Europhys. Lett. 2005, 69, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.; Loh, Y. Optical conductivity of a granular metal at not very low temperatures. arXiv 2006, arXiv:cond-mat/0601138. [Google Scholar]
- Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Camb. Philos. Soc. 2008, 34, 100–108. [Google Scholar] [CrossRef]
- Stojanovic, N.D.; Maithripala, J.M.; Berg, M.; Holtz. Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, the Wiedemann-Franz law. Phys. Rev. 2010, 82, 075418. [Google Scholar] [CrossRef]
- Tzou, D.Y. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. Journal of Heat Transfer 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Da, Y.T. The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 1995, 38, 3231–3240. [Google Scholar]
- Duquesne, J.Y.; Fournier, D.; Fretigny, C. Analytical solutions of the heat diffusion equation for 3 omega method geometry. J. Appl. Phys. 2010, 108, 4067. [Google Scholar] [CrossRef]
- Sheng, L.; Xing, D.; Wang, Z. Transport theory in metallic films: Crossover from the classical to the quantum regime. Phys. Review. B Condens. Matter 1995, 51, 7325–7328. [Google Scholar] [CrossRef] [Green Version]
- Soffer, S.B. Statistical Model for the Size Effect in Electrical Conduction. J. Appl. Phys. 1967, 38, 1710–1715. [Google Scholar] [CrossRef]
- Namba, Y. Resistivity and Temperature Coefficient of Thin Metal Films with Rough Surface. Jpn. J. Appl. Phys. 1970, 9, 1326–1329. [Google Scholar] [CrossRef]
- Gurrum, S.P.; Joshi, Y.; King, W.; Ramakrishna, K.; Gall, M. A Compact Approach to On-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method. J. Electron. Packag. 2008, 130, 031001. [Google Scholar] [CrossRef]
- Gurrum, S.P.; Joshi, Y.; King, W.; Ramakrishna, K. Numerical simulation of electron transport through constriction in a metallic thin film. Electron Device Lett. IEEE 2015, 25, 696–698. [Google Scholar] [CrossRef]
- Lu, L.; Yi, W.; Zhang, D. 3 omega method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 2002, 72, 2996. [Google Scholar] [CrossRef] [Green Version]
- Dames, C.; Chen, G. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 2005, 76, 124902. [Google Scholar] [CrossRef]
- Choi, T.Y.; Poulikakos, D.; Tharian, J.; Sennhauser, U. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl. Phys. Lett. 2005, 87, 56. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.J.; Padilla, A.; Xu, J.; Fisher, T.; Goodson, K. 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon. J. Heat Transf. 2006, 128, 1109–1113. [Google Scholar] [CrossRef] [Green Version]
- Pezarini, R.R.; Bernabe, H.; Sato, F.; Malacarne, L.; Astrath, N.; Rohling, J.; Medina, A.; Reis, R.; Gandra, F. On the use of photothermal techniques to study NiTi phase transitions. Mater. Res. Express 2014, 1, 026502. [Google Scholar] [CrossRef]
- Astrath, F.B.G.; Astrath, N.; Shen, J.; Zhou, J.; Baesso, M. A composite photothermal technique for the measurement of thermal properties of solids. J. Applied Physics 2008, 104. [Google Scholar] [CrossRef]
- Bourgoin, J.P.; Allogho, G.; Hache, A. Thermal conduction in thin films measured by optical surface thermal lensing. J. Appl. Phys. 2010, 108, 223. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique. Appl. Phys. A Mater. Sci. Process. 2015, 119, 871–879. [Google Scholar] [CrossRef]
- Liu, G.Q.; Lin, H.; Tang, X.; Bergler, K.; Wang, X. Characterization of Thermal Transport in One-dimensional Solid Materials. Jove-J. Vis. Exp. 2014, 83, e51144. [Google Scholar] [CrossRef]
- Deng, C.H.; Cong, T.; Xie, Y.; Wang, R.; Wang, T.; Pan, L.; Wang, X. In situ investigation of annealing effect on thermophysical properties of single carbon nanocoil. Int. J. Heat Mass Transf. 2020, 151, 119416. [Google Scholar] [CrossRef]
- Guillou, J.; Lavadiya, D.; Munro, T.; Fronk, T.; Ban, H. From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Appl. Therm. Eng. 2018, 128, 1372–1381. [Google Scholar] [CrossRef]
- Wang, H.; Sen, M. Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat and Mass Transf. 2009, 52, 2102–2109. [Google Scholar] [CrossRef]
- Ghukasyan, A.; Oliveira, P.; Goktas, N.; LaPierre, R. Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3 omega Method. Nanomaterials 2022, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhu, N.; Zou, H.; Feng, Y.; Zhang, X.; Tang, D. Advances in thermal transport properties at nanoscale in China. Int. J. Heat Mass Transf. 2018, 125, 413–433. [Google Scholar] [CrossRef]
- Nakamura, F.; Taketoshi, N.; Yagi, T.; Baba, T. Observation of thermal transfer across a Pt thin film at a low temperature using a femtosecond light pulse thermoreflectance method. Meas. Sci. Technol. 2011, 22, 500–502. [Google Scholar] [CrossRef]
- Wang, H.-D.; Ma, W.-G.; Zhang, X.; Wang, W.; Guo, Z.-Y. Theoretical and experimental study on the heat transport in metallic nanofilms heated by ultra-short pulsed laser. Int. J. Heat Mass Transf. 2011, 54, 967–974. [Google Scholar] [CrossRef]
- Jiang, P.Q.; Qian, X.; Yang, R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 2018, 124, 161103. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yoon, B.; Kuhlmann, E.; Tian, M.; Zhu, J.; George, S.; Lee, Y.; Yang, R. Ultralow Thermal Conductivity of Atomic/Molecular Layer-Deposited Hybrid Organic-Inorganic Zincone Thin Films. Nano Lett. 2013, 13, 5594–5599. [Google Scholar] [CrossRef]
- Ma, W.G.; Zhang, X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. Int. J. Heat Mass Transf. 2013, 58, 639–651. [Google Scholar] [CrossRef]
- Boiko, B.T.; Pugachev, A.; Bratsychin, V. Method for the determination of the thermophysical properties of evaporated thin films. Thin Solid Film. 1973, 17, 157–161. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wang, X.; Wang, T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 2007, 101, 063537. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Dong, H.; Xu, S.; Wang, X.; Zhang, J.; Wang, Y. Thermal transport in graphene fiber fabricated by wet-spinning method. Mater. Lett. 2016, 183, 147–150. [Google Scholar] [CrossRef]
- Hunter, N.; Karamati, A.; Xie, Y.; Lin, H.; Wang, X. Laser Photoreduction of Graphene Aerogel Microfibers: Dynamic Electrical and Thermal Behaviors. ChemPhysChem 2022, e202200417. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zobeiri, H.; Lin, H.; Xie, D.; Yue, Y.; Wang, X. Coherency between thermal and electrical transport of partly reduced graphene paper. Carbon. 2021, 178, 92–102. [Google Scholar] [CrossRef]
- Lin, H.; Hunter, N.; Zobeiri, H.; Yue, Y.; Wang, X. Ultra-high thermal sensitivity of graphene microfiber. Carbon 2023, 203, 620–629. [Google Scholar] [CrossRef]
- Liu, G.Q.; Huang, X.; Wang, Y.; Zhang, Y.; Wang, X. Thermal transport in single silkworm silks and the behavior under stretching. Soft Matter 2012, 8, 9792–9799. [Google Scholar] [CrossRef]
- Cheng, Z.; Han, M.; Yuan, P.; Xu, S.; Cola, B.; Wang, X. Strongly anisotropic thermal and electrical conductivities of a self-assembled silver nanowire network. Rsc Adv. 2016, 6, 90674–90681. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Wang, X. Thermophysical properties of free-standing micrometer-thick Poly(3-hexylthiophene) films. Thin Solid Film. 2011, 519, 5700–5705. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Li, Y. Characterization of Thermal Conductivity of Carbon Fibers at Temperatures as Low as 10 K. Int. J. Thermophys. 2018, 39, 97. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Li, Y.; Mei, N. Thermal Conductivity and Raman Spectra of Carbon Fibers. Int. J. Thermophys. 2017, 38, 1–9. [Google Scholar] [CrossRef]
- Lin, H.; Liu, X.; Kou, A.; Xu, S.; Dong, H. 2019-One-Dimensional Thermal Characterization at the Micro Nanoscale Review of the TET Technique. Int. J. Thermophys. 2019, 40, 108. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Thermal and Electrical Conduction in Ultrathin Metallic Films: 7 nm down to Sub-Nanometer Thickness. Small 2013, 9, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, Z.; Xu, S.; Cheng, Z.; Hashemi, N.; Deng, C.; Wang, X. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale 2015, 7, 10101–10110. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, X.; Xie, H. Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer 2014, 55, 6373–6380. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology 2013, 24, 415706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Xu, S.; Zhang, Y.; Wang, X. Electron transport and bulk-like behavior of Wiedemann-Franz law for sub-7 nm-thin iridium films on silkworm silk. Acs Appl. Mater Interfaces 2014, 6, 11341–11347. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Li, C.; Dong, H.; Wang, X. Thermal and electrical conduction in 6.4 nm thin gold films. Nanoscale 2013, 5, 4652–4656. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, R.; Mu, Y.; Liu, S.; Zhang, J.; Lin, H. Thermal and Electrical Properties of 3.2 nm Thin Gold Films Coated on Alginate Fiber. J. Therm. Sci. Eng. Appl. 2017, 10, 011012. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Xu, S.; Yuan, P.; Xu, X.; Wang, X. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate. Nanoscale 2016, 8, 10298–10309. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Shen, F.; Xu, J.; Zhang, L.; Xu, S.; Liu, N.; Luo, S. Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials 2023, 13, 140. https://doi.org/10.3390/nano13010140
Lin H, Shen F, Xu J, Zhang L, Xu S, Liu N, Luo S. Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials. 2023; 13(1):140. https://doi.org/10.3390/nano13010140
Chicago/Turabian StyleLin, Huan, Fuhua Shen, Jinbo Xu, Lijun Zhang, Shen Xu, Na Liu, and Siyi Luo. 2023. "Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization" Nanomaterials 13, no. 1: 140. https://doi.org/10.3390/nano13010140
APA StyleLin, H., Shen, F., Xu, J., Zhang, L., Xu, S., Liu, N., & Luo, S. (2023). Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials, 13(1), 140. https://doi.org/10.3390/nano13010140