Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiON as a New Coating Material
2.2. Preparation of Si-TiON Composite
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Long, B.; Zhang, Q.; Qian, Y.; Song, T.; He, W.; Xiao, M.; Liu, L.; Wang, X.; Tong, Y. Turning commercial MnO2 (≥85 wt%) into high-crystallized K+-doped LiMn2O4 cathode with superior structural stability by a low-temperature molten salt method. J. Colloid Interface Sci. 2022, 608, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-C.; Zhang, X.-S.; Zhu, Y.-H.; Zhang, Y.; Xin, S.; Wan, L.-J.; Guo, Y.-G. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater. 2021, 1, 100017. [Google Scholar] [CrossRef]
- Peng, X.; Wang, C.; Liu, Y.; Fang, W.; Zhu, Y.; Fu, L.; Ye, J.; Liu, L.; Wu, Y. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.; Zhao, F.; Zhang, J.; Liu, Y.; Hou, L.; Yuan, C. Construction and Operating Mechanism of High-Rate Mo-Doped Na3V2(PO4)3@C Nanowires toward Practicable Wide-Temperature-Tolerance Na-Ion and Hybrid Li/Na-Ion Batteries. Adv. Energy Mater. 2021, 11, 2100287. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Zhang, Y.; Hou, L.; Yuan, C. Efficient Lithium Storage of Si-Based Anode Enabled by a Dual-Component Protection Strategy. Adv. Energy Sustain. Res. 2022, 3, 2200028. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Zhuang, Q.; Kong, J.; Seok, I.; Zhang, J.; Liu, H.; Murugadoss, V.; Gao, Q.; Guo, Z. Achieving carbon-rich silicon-containing ceramic anode for advanced lithium ion battery. Cerams. Int. 2019, 45, 10572–10580. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, X.; Ma, Z.; Zhang, Y.; Li, C.; Xiao, W.; Jiang, Y. Silicon oxycarbide-carbon hybrid nanofibers: A promising anode for ultralong-cycle lithium ion batteries with high rate capability. Cerams. Int. 2020, 46, 6867–6874. [Google Scholar] [CrossRef]
- Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Source 2007, 163, 1003–1039. [Google Scholar] [CrossRef]
- Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space. J. Am. Chem. Soc. 2010, 132, 8548–8549. [Google Scholar] [CrossRef]
- McDowell, M.T.; Lee, S.W.; Harris, J.T.; Korgel, B.A.; Wang, C.; Nix, W.D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Yang, X.; Zhang, S.; Zhang, L.-L.; Wen, Z. High-performance phosphorus-modified SiO/C anode material for lithium ion batteries. Cerams. Int. 2018, 44, 18509–18515. [Google Scholar] [CrossRef]
- Kim, S.C.; Huang, W.; Zhang, Z.; Wang, J.; Kim, Y.; Jeong, Y.K.; Oyakhire, S.T.; Yang, Y.; Cui, Y. Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries. MRS Bull. 2022, 47, 127–133. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.K.; Hong, J.H.; Cho, J.S.; Park, S.K.; Kang, Y.C. Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. Nanoscale 2019, 11, 19012–19057. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C.-Y.; Li, Y.-K.; Cao, F.-F.; Xin, S. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739–1749. [Google Scholar] [CrossRef]
- Hwang, T.H.; Lee, Y.M.; Kong, B.S.; Seo, J.S.; Choi, J.W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Zhang, X.; Luo, B.; Zhang, Y.; Zhi, L. Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 2013, 25, 3560–3565. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Kim, I.T.; Hur, J. Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries. Electrochim. Acta 2019, 297, 355–364. [Google Scholar] [CrossRef]
- Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181. [Google Scholar] [CrossRef]
- Liang, B.; Liu, Y.; Xu, Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Source 2014, 267, 469–490. [Google Scholar] [CrossRef]
- Wang, K.; Pei, S.; He, Z.; Huang, L.-A.; Zhu, S.; Guo, J.; Shao, H.; Wang, J. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 2019, 356, 272–281. [Google Scholar] [CrossRef]
- Park, G.D.; Choi, J.H.; Jung, D.S.; Park, J.-S.; Kang, Y.C. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries. J. Alloys Compd. 2020, 821, 153224. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Zhang, J.; Chen, J.; Du, C.; Sun, T.; Liu, J.; Gong, C.; Guo, J.; Yu, L.; et al. Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries. Cerams. Int. 2019, 45, 16195–16201. [Google Scholar] [CrossRef]
- Nava, G.; Schwan, J.; Boebinger, M.G.; McDowell, M.T.; Mangolini, L. Silicon-Core-Carbon-Shell Nanoparticles for Lithium-Ion Batteries: Rational Comparison between Amorphous and Graphitic Carbon Coatings. Nano Lett. 2019, 19, 7236–7245. [Google Scholar] [CrossRef]
- Piper, D.M.; Yersak, T.A.; Son, S.-B.; Kim, S.C.; Kang, C.S.; Oh, K.H.; Ban, C.; Dillon, A.C.; Lee, S.-H. Conformal Coatings of Cyclized-PAN for Mechanically Resilient Si nano-Composite Anodes. Adv. Energy Mater. 2013, 3, 697–702. [Google Scholar] [CrossRef]
- Li, B.; Zhao, W.; Yang, Z.; Zhang, C.; Dang, F.; Liu, Y.; Jin, F.; Chen, X. A carbon-doped anatase TiO2-Based flexible silicon anode with high-performance and stability for flexible lithium-ion battery. J. Power Source 2020, 466, 228339. [Google Scholar] [CrossRef]
- Pan, Q.; Zuo, P.; Lou, S.; Mu, T.; Du, C.; Cheng, X.; Ma, Y.; Gao, Y.; Yin, G. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloys Compd. 2017, 723, 434–440. [Google Scholar] [CrossRef]
- Drygaś, M.; Czosnek, C.; Paine, R.T.; Janik, J.F. Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology. Chem. Mater. 2006, 18, 3122–3129. [Google Scholar] [CrossRef]
- Tang, D.; Yi, R.; Gordin, M.L.; Melnyk, M.; Dai, F.; Chen, S.; Song, J.; Wang, D. Titanium Nitride Coating to Enhance the Performance of Silicon Nanoparticles as a Lithium-Ion Battery Anode. J. Mater. Chem. A 2014, 2, 10375–10378. [Google Scholar] [CrossRef]
- Lim, W.G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J.W.; Lee, J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. Adv. Mater. 2019, 31, 1806547. [Google Scholar] [CrossRef]
- Lin, J.; He, J.; Chen, Y.; Li, Q.; Yu, B.; Xu, C.; Zhang, W. Pomegranate-Like Silicon/Nitrogen-doped Graphene Microspheres as Superior-Capacity Anode for Lithium-Ion Batteries. Electrochim. Acta 2016, 215, 667–673. [Google Scholar] [CrossRef]
- Park, G.D.; Lee, J.; Piao, Y.; Kang, Y.C. Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chem. Eng. J. 2018, 335, 600–611. [Google Scholar] [CrossRef]
- Ma, S.; Reish, M.E.; Zhang, Z.; Harrison, I.; Yates, J.T. Anatase-Selective Photoluminescence Spectroscopy of P25 TiO2 Nanoparticles: Different Effects of Oxygen Adsorption on the Band Bending of Anatase. J. Phys. Chem. C 2017, 121, 1263–1271. [Google Scholar] [CrossRef]
- Wang, C.-L.; Hwang, W.-S.; Chu, H.-L.; Lin, H.-J.; Ko, H.-H.; Wang, M.-C. Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Cerams. Int. 2016, 42, 13136–13143. [Google Scholar] [CrossRef]
- Seo, S.G.; Park, C.-H.; Kim, H.-Y.; Nam, W.H.; Jeong, M.; Choi, Y.-N.; Lim, Y.S.; Seo, W.-S.; Kim, S.-J.; Lee, J.Y.; et al. Preparation and visible-light photocatalysis of hollow rock-salt TiO1−xNx nanoparticles. J. Mater. Chem. A 2013, 1, 3639. [Google Scholar] [CrossRef]
- Graciani, J.; Hamad, S.; Sanz, J.F. Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition. Phys. Rev. B 2009, 80, 184112. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Jung, D.S.; Choi, J.W. Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano Lett. 2014, 14, 7120–7125. [Google Scholar] [CrossRef]
- Zhang, C.; Ada Khoo, S.L.; Chen, X.D.; Quek, S.Y. Microencapsulation of fermented noni juice via micro-fluidic-jet spray drying: Evaluation of powder properties and functionalities. Powder Technol. 2020, 361, 995–1005. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Power Technol. 2011, 22, 1–19. [Google Scholar] [CrossRef]
- Park, J.-S.; Yang, S.; Kang, Y.C. Prussian blue analogue nanocubes with hollow interior and porous walls encapsulated within reduced graphene oxide nanosheets and their sodium-ion storage performances. Chem. Eng. J. 2020, 393, 124606. [Google Scholar] [CrossRef]
- Konno, M.; Ogashiwa, T.; Sunaoshi, T.; Orai, Y.; Sato, M. Lattice imaging at an accelerating voltage of 30kV using an in-lens type cold field-emission scanning electron microscope. Ultramicroscopy 2014, 145, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.; Joseph, A.; Rane, R.; Saikia, B.K.; Mukherjee, S. Role of substrate and deposition conditions on the texture evolution of titanium nitride thin film on bare and plasma-nitrided high-speed steel. J. Theor. Appl. Phys. 2013, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Zhang, H.J.; Bao, S.N.; Shen, Y.G.; Zhou, Z.F. XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias. Physica B 2004, 352, 118–126. [Google Scholar] [CrossRef]
- Ahn, Y.S.; Ban, S.H.; Kim, K.J.; Kang, H.; Yang, S.; Roh, Y.; Lee, N.E. Interface Formation and Electrical Properties of TiOxNy/HfO2/Si Structure. Jpn. J. Appl. Phys. 2002, 41, 7282–7287. [Google Scholar] [CrossRef]
- Han, J.H.; Bang, J.H. A hollow titanium oxynitride nanorod array as an electrode substrate prepared by the hot ammonia induced Kirkendall effect. J. Mater. Chem. A 2014, 2, 10568. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, Y.; Li, Q.; Wei, Q.; Yang, W.; Tan, S.; Xu, X.; An, Q.; Mai, L. Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. J. Mater. Chem. A 2017, 5, 10827–10835. [Google Scholar] [CrossRef]
- Mucha, N.R.; Som, J.; Shaji, S.; Fialkova, S.; Apte, P.R.; Balasubramanian, B.; Shield, J.E.; Anderson, M.; Kumar, D. Electrical and optical properties of titanium oxynitride thin films. J. Mater. Sci. 2020, 55, 5123–5134. [Google Scholar] [CrossRef]
- Park, G.D.; Hong, J.H.; Jung, D.S.; Lee, J.-H.; Kang, Y.C. Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders as anode materials for high-performance Li-ion batteries. J. Mater. Chem. A 2019, 7, 15766–15773. [Google Scholar] [CrossRef]
- Na, R.; Liu, Y.; Wu, Z.-P.; Cheng, X.; Shan, Z.; Zhong, C.-J.; Tian, J. Nano-Silicon composite materials with N-doped graphene of controllable and optimal pyridinic-to-pyrrolic structural ratios for lithium ion battery. Electrochim. Acta 2019, 321, 134742. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, B.; Liu, H.; Zhang, C.; Wu, F.; Luo, H.; Yu, P. One-step synthesis of nanoporous silicon @ graphitized carbon composite and its superior lithium storage properties. J. Alloys Compd. 2021, 861, 157955. [Google Scholar] [CrossRef]
- Zhu, H.; Shiraz, M.H.A.; Liu, L.; Hu, Y.; Liu, J. A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries. Nanotechnology 2021, 32, 144001. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.E.; Kim, D.; Kim, M.J.; Kim, J.H.; Kang, Y.C.; Roh, K.C.; Choi, J.; Lee, H.W.; Jung, D.S. Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. Nanomaterials 2023, 13, 132. https://doi.org/10.3390/nano13010132
Wang SE, Kim D, Kim MJ, Kim JH, Kang YC, Roh KC, Choi J, Lee HW, Jung DS. Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. Nanomaterials. 2023; 13(1):132. https://doi.org/10.3390/nano13010132
Chicago/Turabian StyleWang, Sung Eun, DoHoon Kim, Min Ji Kim, Jung Hyun Kim, Yun Chan Kang, Kwang Chul Roh, Junghyun Choi, Hyung Woo Lee, and Dae Soo Jung. 2023. "Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere" Nanomaterials 13, no. 1: 132. https://doi.org/10.3390/nano13010132
APA StyleWang, S. E., Kim, D., Kim, M. J., Kim, J. H., Kang, Y. C., Roh, K. C., Choi, J., Lee, H. W., & Jung, D. S. (2023). Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. Nanomaterials, 13(1), 132. https://doi.org/10.3390/nano13010132