Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets
Abstract
:1. Introduction
2. Experiments and Materials
2.1. Materials
2.2. Experimental Setup and Methods
2.3. Sound-Field Simulation
3. Results and Discussion
3.1. Morphology Evolution during Evaporation
3.2. Formation of the Gelation Shell
3.3. Mechanism for the Invagination
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zang, D.; Tarafdar, S.; Tarasevich, Y.Y.; Dutta Choudhury, M.; Dutta, T. Evaporation of a Droplet: From physics to applications. Phys. Rep. 2019, 804, 1–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Y.; Liu, Z.; Li, Z.; Zang, D. Surface wrinkling and cracking dynamics in the drying of colloidal droplets. Eur. Phys. J. E 2014, 37, 84. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, T.; Liao, L.; Cao, Z. Ring formation from a drying sessile colloidal droplet. AIP Adv. 2013, 3, 102109. [Google Scholar] [CrossRef] [Green Version]
- Lohani, D.; Sarkar, S. Nanoscale Topographical Fluctuations: A Key Factor for Evaporative Colloidal Self-Assembly. Langmuir 2018, 34, 12751–12758. [Google Scholar] [CrossRef] [PubMed]
- Davidson, Z.S.; Huang, Y.; Gross, A.; Martinez, A.; Still, T.; Zhou, C.; Collings, P.J.; Kamien, R.D.; Yodh, A.G. Deposition and drying dynamics of liquid crystal droplets. Nat. Commun. 2017, 8, 15642. [Google Scholar] [CrossRef] [Green Version]
- Kočišová, E.; Petr, M.; Šípová, H.; Kylián, O.; Procházka, M. Drop coating deposition of a liposome suspension on surfaces with different wettabilities: “Coffee ring” formation and suspension preconcentration. Phys. Chem. Chem. Phys. 2017, 19, 388–393. [Google Scholar] [CrossRef]
- Sowade, E.; Blaudeck, T.; Baumann, R.R. Inkjet Printing of Colloidal Nanospheres: Engineering the Evaporation-Driven Self-Assembly Process to Form Defined Layer Morphologies. Nanoscale Res. Lett. 2015, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Bruning, M.A.; Loeffen, L.; Marin, A. Particle monolayer assembly in evaporating salty colloidal droplets. Phys. Rev. Fluids 2020, 5, 083603. [Google Scholar] [CrossRef]
- Allain, C.; Limat, L. Regular Patterns of Cracks Formed by Directional Drying of a Collodial Suspension. Phys. Rev. Lett. 1995, 74, 2981–2984. [Google Scholar] [CrossRef]
- Bahadur, J.; Sen, D.; Mazumder, S.; Paul, B.; Bhatt, H.; Singh, S.G. Control of Buckling in Colloidal Droplets during Evaporation-Induced Assembly of Nanoparticles. Langmuir 2012, 28, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Lama, H.; Basavaraj, M.G.; Satapathy, D.K. Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter 2017, 13, 5445–5452. [Google Scholar] [CrossRef]
- Tirumkudulu, M.S. Buckling of a drying colloidal drop. Soft Matter 2018, 14, 7455–7461. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-Y.; Kim, Y.W.; Yoo, J.Y. Behavior of Particles in an Evaporating Didisperse Colloid Droplet on a Hydrophilic Surface. Anal. Chem. 2009, 81, 8256–8259. [Google Scholar] [CrossRef] [PubMed]
- Batishcheva, K.A.; Kuznetsov, G.V.; Orlova, E.G.; Vympina, Y.N. Evaporation of colloidal droplets from aluminum–magnesium alloy surfaces after laser-texturing and mechanical processing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127301. [Google Scholar] [CrossRef]
- Weon, B.M.; Je, J.H. Self-Pinning by Colloids Confined at a Contact Line. Phys. Rev. Lett. 2013, 110, 028303. [Google Scholar] [CrossRef] [Green Version]
- Malla, L.K.; Bhardwaj, R.; Neild, A. Colloidal deposit of an evaporating sessile droplet on a non-uniformly heated substrate. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 124009. [Google Scholar] [CrossRef]
- Biswas, P.; Sen, D.; Mazumder, S.; Basak, C.B.; Doshi, P. Temperature Mediated Morphological Transition during Drying of Spray Colloidal Droplets. Langmuir 2016, 32, 2464–2473. [Google Scholar] [CrossRef]
- Lintingre, E.; Lequeux, F.; Talini, L.; Tsapis, N. Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter 2016, 12, 7435–7444. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.A.B.; Marzo, A. Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator. Phys. Fluids 2019, 31, 117101. [Google Scholar] [CrossRef]
- Shi, Q.; Di, W.; Dong, D.; Yap, L.W.; Li, L.; Zang, D.; Cheng, W. A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly. ACS Nano 2019, 13, 5243–5250. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Prabhakaran, D.; Basu, S. Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets. Phys. Fluids 2019, 31, 112102. [Google Scholar] [CrossRef]
- Pathak, B.; Basu, S. Modulation of Buckling Dynamics in Nanoparticle Laden Droplets Using External Heating. Langmuir 2016, 32, 2591–2600. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, J.; Sen, D.; Mazumder, S.; Bhattacharya, S.; Frielinghaus, H.; Goerigk, G. Origin of Buckling Phenomenon during Drying of Micrometer-Sized Colloidal Droplets. Langmuir 2011, 27, 8404–8414. [Google Scholar] [CrossRef]
- Sen, D.; Bahadur, J.; Mazumder, S.; Bhattacharya, S. Formation of hollow spherical and doughnut microcapsules by evaporation induced self-assembly of nanoparticles: Effects of particle size and polydispersity. Soft Matter 2012, 8, 10036–10044. [Google Scholar] [CrossRef]
- Saha, A.; Basu, S.; Kumar, R. Effects of acoustic-streaming-induced flow in evaporating nanofluid droplets. J. Fluid Mech. 2012, 692, 207–219. [Google Scholar] [CrossRef]
- Pathak, B.; Basu, S. Phenomenology and control of buckling dynamics in multicomponent colloidal droplets. J. Appl. Phys. 2015, 117, 244901. [Google Scholar] [CrossRef]
- Miglani, A.; Basu, S. Sphere to ring morphological transformation in drying nanofluid droplets in a contact-free environment. Soft Matter 2015, 11, 2268–2278. [Google Scholar] [CrossRef] [Green Version]
- King, L.V. On the acoustic radiation pressure on spheres. Proc. R. Soc. London. Ser. A—Math. Phys. Sci. 1934, 147, 212–240. [Google Scholar] [CrossRef] [Green Version]
- Zang, D.; Li, J.; Chen, Z.; Zhai, Z.; Geng, X.; Binks, B.P. Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation. Langmuir 2015, 31, 11502–11507. [Google Scholar] [CrossRef]
- Di, W.; Zhang, Z.; Li, L.; Lin, K.; Li, J.; Li, X.; Binks, B.P.; Chen, X.; Zang, D. Shape evolution and bubble formation of acoustically levitated drops. Phys. Rev. Fluids 2018, 3, 103606. [Google Scholar] [CrossRef]
- Yarin, A.L.; Brenn, G.; Kastner, O.; Tropea, C. Drying of acoustically levitated droplets of liquid–solid suspensions: Evaporation and crust formation. Phys. Fluids 2002, 14, 2289–2298. [Google Scholar] [CrossRef]
- Trinh, E.H.; Robey, J.L. Experimental study of streaming flows associated with ultrasonic levitators. Phys. Fluids 1994, 6, 3567–3579. [Google Scholar] [CrossRef]
- Ali Al Zaitone, B.; Tropea, C. Evaporation of pure liquid droplets: Comparison of droplet evaporation in an acoustic field versus glass-filament. Chem. Eng. Sci. 2011, 66, 3914–3921. [Google Scholar] [CrossRef]
- Chen, H.; Li, A.; Zhang, Y.; Zhang, X.; Zang, D. Evaporation and liquid-phase separation of ethanol–cyclohexane binary drops under acoustic levitation. Phys. Fluids 2022, 34, 092108. [Google Scholar] [CrossRef]
- Yarin, A.L.; Brenn, G.; Kastner, O.; Rensink, D.; Tropea, C. Evaporation of acoustically levitated droplets. J. Fluid Mech. 1999, 399, 151–204. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Tijerino, E.; Saha, A.; Basu, S. Structural morphology of acoustically levitated and heated nanosilica droplet. Appl. Phys. Lett. 2010, 97, 123106. [Google Scholar] [CrossRef] [Green Version]
- Zang, D.; Li, L.; Di, W.; Zhang, Z.; Ding, C.; Chen, Z.; Shen, W.; Binks, B.P.; Geng, X. Inducing drop to bubble transformation via resonance in ultrasound. Nat. Commun. 2018, 9, 3546. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
PTFE solid content (wt%) | 60 ± 2 |
Particle diameter (nm) | 50 |
Kinematic viscosity (25 °C mm2/s) | 6 |
Density (25 °C g/cm3) | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, Y.; Wang, H.; Dong, X.; Zang, D. Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets. Nanomaterials 2023, 13, 133. https://doi.org/10.3390/nano13010133
Chen H, Zhang Y, Wang H, Dong X, Zang D. Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets. Nanomaterials. 2023; 13(1):133. https://doi.org/10.3390/nano13010133
Chicago/Turabian StyleChen, Hongyue, Yongjian Zhang, Heyi Wang, Xin Dong, and Duyang Zang. 2023. "Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets" Nanomaterials 13, no. 1: 133. https://doi.org/10.3390/nano13010133
APA StyleChen, H., Zhang, Y., Wang, H., Dong, X., & Zang, D. (2023). Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets. Nanomaterials, 13(1), 133. https://doi.org/10.3390/nano13010133