Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels
Abstract
:1. Introduction
2. Methodology
2.1. Ni Nanowires
2.2. Ag Nanoparticles
2.3. Gelatin-Coated NiNWs
2.4. Structural Characterization
2.5. Chemical Characterization
2.6. Detection
3. Results and Discussion
3.1. Structural Characterization
3.2. Chemical Characterization
3.3. Detection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zare-Zardini, H.; Ferdowsian, F.; Soltaninejad, H.; Azam, A.G.; Soleymani, S.; Zare-Shehneh, M.; Mofidi, M.; Rafati, R.; Ebrahimi, L. Application of Nanotechnology in Biomedicine: A Major Focus on Cancer Therapy. J. Nano Res. 2015, 35, 55–66. [Google Scholar] [CrossRef]
- Nikitin, P.I.; Vetoshko, P.M.; Ksenevich, T.I. Magnetic Immunoassays. Sens. Lett. 2007, 5, 296–299. [Google Scholar] [CrossRef]
- Reich, D.H.; Tanase, M.; Hultgren, A.; Bauer, L.A.; Chen, C.S.; Meyer, G.J. Biological Applications of Multifunctional Magnetic Nanowires (Invited). J. Appl. Phys. 2003, 93, 7275–7280. [Google Scholar] [CrossRef]
- Wong, C.H.; Chen, C.P.; Chang, C.C.; Chen, C.Y. Bio-Functionalized Magnetic Nanoparticles for the Immunoassay of Fetal Fibronectin: A Feasibility Study for the Prediction of Preterm Birth. Sci. Rep. 2017, 7, 42461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobczak-kupiec, A.; Venkatesan, J.; Alanezi, A.A.; Walczyk, D.; Farooqi, A.; Malina, D.; Hosseini, S.H.; Tyliszczak, B. Magnetic Nanomaterials and Sensors for Biological Detection. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2459–2473. [Google Scholar] [CrossRef]
- Schladt, T.D.; Schneider, K.; Schild, H.; Tremel, W. Synthesis and Bio-Functionalization of Magnetic Nanoparticles for Medical Diagnosis and Treatmen. Dalton Trans. 2011, 40, 6315–6343. [Google Scholar] [CrossRef]
- Pan, Y.; Du, X.; Zhao, F.; Xu, B. Magnetic Nanoparticles for the Manipulation of Proteins and Cells. Chem. Soc. Rev. 2012, 41, 2912–2942. [Google Scholar] [CrossRef]
- Gimenez, A.J.; Luna-Bárcenas, G.; Sanchez, I.C.; Yáñez-Limón, J.M. Nanowire Light Scattering Variation Induced by Magnetic Alignment. J. Appl. Phys. 2014, 116, 74305. [Google Scholar] [CrossRef]
- Gimenez, A.J.; Wong, D.G.R.; Camacho, S.E.F.; Sanchez, I.C.; Yáñez-Limón, J.M.; Luna-Bárcenas, G. Optical Detection of Magnetic Nanoparticles in Colloidal Suspensions. J. Magn. Magn. Mater. 2016, 402, 150–155. [Google Scholar] [CrossRef]
- Kommareddy, S.; Shenoy, D.B.; Amiji, M.M. Gelatin Nanoparticles and Their Biofunctionalization. In Nanotechnologies for the Life Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Darroudi, M.; Ahmad, M.B.; Shameli, K.; Abdullah, A.H.; Ibrahim, N.A. Synthesis and Characterization of UV-Irradiated Silver/Montmorillonite Nanocomposites. Solid State Sci. 2009, 11, 1621–1624. [Google Scholar] [CrossRef]
- Darroudi, M.; Ahmad, M.B.; Zak, A.K.; Zamiri, R.; Hakimi, M. Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles under UV-Light. Int. J. Mol. Sci. 2011, 12, 6346–6356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Gu, M.M.; Zheng, T.T.; Zhu, J.J. Synthesis of Gelatin-Stabilized Gold Nanoparticles and Assembly of Carboxylic Single-Walled Carbon nanotubes/Au Composites for Cytosensing and Drug Uptake. Anal. Chem. 2009, 81, 6641–6648. [Google Scholar] [CrossRef]
- Tabata, Y.; Ikada, Y. Protein Release from Gelatin Matrices. Adv. Drug Deliv. Rev. 1998, 31, 287–301. [Google Scholar] [CrossRef]
- Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-Based Electrochemical Biosensors. Electroanalysis 2006, 18, 533–550. [Google Scholar] [CrossRef]
- Gao, N.; Wang, H.; Yang, E.H. An Experimental Study on Ferromagnetic Nickel Nanowires Functionalized with Antibodies for Cell Separation. Nanotechnology 2010, 21, 105107. [Google Scholar] [CrossRef]
- Pan, H.; Liu, B.; Yi, J.; Poh, C.; Lim, S.; Ding, J.; Feng, Y.; Huan, C.H.A.; Lin, J. Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Properties. J. Phys. Chem. B 2005, 109, 3094–3098. [Google Scholar] [CrossRef]
- Yin, A.J.; Li, J.; Jian, W.; Bennett, A.J.; Xu, J.M. Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition. Appl. Phys. Lett. 2001, 79, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Nielsch, K.; Müller, F.; Li, A.P.; Gösele, U. Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. Adv. Mater. 2000, 12, 582–586. [Google Scholar] [CrossRef]
- Lin, S.W.; Chang, S.C.; Liu, R.S.; Hu, S.F.; Jan, N.T. Fabrication and Magnetic Properties of Nickel Nanowires. J. Magn. Magn. Mater. 2004, 282, 28–31. [Google Scholar] [CrossRef]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Evanoff, D.D.; Chumanov, G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem 2005, 6, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Coester, C.J.; Langer, K.; von Briesen, H.; Kreuter, J. Gelatin Nanoparticles by Two Step Desolvation a New Preparation Method, Surface Modifications and Cell Uptake. J. Microencapsul. 2000, 17, 187–193. [Google Scholar] [PubMed]
- Azarmi, S.; Huang, Y.; Chen, H.; McQuarrie, S.; Abrams, D.; Roa, W.; Warren, H.F.; Miller, G.G.; Löbenberg, R. Optimization of a Two-Step Desolvation Method for Preparing Gelatin Nanoparticles and Cell Uptake Studies in 143B Osteosarcoma Cancer Cells. J. Pharm. Pharm. Sci. 2006, 9, 124–132. [Google Scholar] [PubMed]
- Rezić, I.; Steffan, I. ICP-OES determination of metals present in textile materials. Microchem. J. 2005, 85, 46–51. [Google Scholar] [CrossRef]
- Xu, J.; Jiao, J.Q.; Li, Q.; Li, S.D. Ultralow detection limit of giant magnetoresistance biosensor using graphene composite nanoparticle label. Chin. Phys. B 2017, 26, 010701. [Google Scholar] [CrossRef]
Sample | ppb | Standard Deviation | g/mL |
---|---|---|---|
NiNW-gelatin | 45 | 1.0 | 9.0 × 10−7 |
NiNW-Ag-gelatin | 56 | 0.7 | 11.2 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas-Corona, M.C.; Lopez-Romero, J.M.; Manzano-Ramírez, A.; Esparza, R.; Zavala-Arce, R.E.; Gimenez, A.J.; Luna-Bárcenas, G. Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels. Nanomaterials 2023, 13, 15. https://doi.org/10.3390/nano13010015
Cuevas-Corona MC, Lopez-Romero JM, Manzano-Ramírez A, Esparza R, Zavala-Arce RE, Gimenez AJ, Luna-Bárcenas G. Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels. Nanomaterials. 2023; 13(1):15. https://doi.org/10.3390/nano13010015
Chicago/Turabian StyleCuevas-Corona, M. Charbel, J. Mauricio Lopez-Romero, Alejandro Manzano-Ramírez, Rodrigo Esparza, Rosa E. Zavala-Arce, Alejandro J. Gimenez, and Gabriel Luna-Bárcenas. 2023. "Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels" Nanomaterials 13, no. 1: 15. https://doi.org/10.3390/nano13010015
APA StyleCuevas-Corona, M. C., Lopez-Romero, J. M., Manzano-Ramírez, A., Esparza, R., Zavala-Arce, R. E., Gimenez, A. J., & Luna-Bárcenas, G. (2023). Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels. Nanomaterials, 13(1), 15. https://doi.org/10.3390/nano13010015