Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents and Materials
2.3. Fabrication of the Sensor Working Electrodes
2.4. Preparation of rGO/AuNPs-Modified Electrode
2.5. Frabriction of DOX Aptasensor
2.6. Electrochemical Measurements
3. Results
3.1. Characterization of rGO/AuNPs Nanomaterials and Constructed rGO/AuNPs/Apt Interface
3.2. Determination of Aptamer Surface Density
3.3. Electrochemical Properties of the Aptasensor
3.4. Analytical Results of the DOX Aptasensor
3.5. Evaluation of Repeatability, Selectivity and Stability of the Aptasensor
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA-Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Xia, C.F.; Dong, X.S.; Li, H.; Cao, M.M.; Sun, D.A.Q.; He, S.Y.; Yang, F.; Yan, X.X.; Zhang, S.L.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Delou, J.M.A.; Souza, A.S.O.; Souza, L.C.M.; Borges, H.L. Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells 2019, 8, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Herrero, E.; Fernandez-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licata, S.; Saponiero, A.; Mordente, A.; Minotti, G. Doxorubicin metabolism and toxicity in human myocardium: Role of cytoplasmic deglycosidation and carbonyl reduction. Chem. Res. Toxicol. 2000, 13, 414–420. [Google Scholar] [CrossRef]
- Speth, P.A.J.; Vanhoesel, Q.; Haanen, C. Clinical Pharmacokinetics of Doxorubicin. Clin. Pharmacokinet. 1988, 15, 15–31. [Google Scholar] [CrossRef]
- Suzuki, F.; Hashimoto, K.; Kikuchi, H.; Nishikawa, H.; Matsumoto, H.; Shimada, J.; Kawase, M.; Sunaga, K.; Tsuda, T.; Satoh, K.; et al. Induction of tumor-specific cytotoxicity and apoptosis by doxorubicin. Anticancer Res. 2005, 25, 887–893. [Google Scholar]
- Skalova, S.; Langmaier, J.; Barek, J.; Vyskocil, V.; Navratil, T. Doxorubicin determination using two novel voltammetric approaches: A comparative study. Electrochim. Acta 2020, 330, 8. [Google Scholar] [CrossRef]
- Tian, Y.H.; Li, S.P.; Song, J.; Ji, T.J.; Zhu, M.T.; Anderson, G.J.; Wei, J.Y.; Nie, G.J. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390. [Google Scholar] [CrossRef]
- Yong, T.Y.; Zhang, X.Q.; Bie, N.N.; Zhang, H.B.; Zhang, X.T.; Li, F.Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 2013, 65, 1964–2015. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics Adriamycin and daunorubicin. Biochem. Pharmacol. 1999, 57, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Ricciarello, R.; Pichini, S.; Pacifici, R.; Altieri, I.; Pellegrini, M.; Fattorossi, A.; Zuccaro, P. Simultaneous determination of epirubicin, doxorubicin and their principal metabolites in human plasma by high-performance liquid chromatography and electrochemical detection. J. Chromatogr. B 1998, 707, 219–225. [Google Scholar] [CrossRef]
- Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics 2011, 21, 440–446. [Google Scholar] [CrossRef]
- Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart 2018, 104, 971–977. [Google Scholar] [CrossRef]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [Google Scholar] [CrossRef]
- Aubelsadron, G.; Londosgagliardi, D. Daunorubicin and Doxorubicin, Anthracycline Antibiotics, a Physicochemical and Biological Review. Biochimie 1984, 66, 333–352. [Google Scholar] [CrossRef]
- McMahon, G.; O’Connor, R. Therapeutic drug monitoring in oncology: Does it have a future? Bioanalysis 2009, 1, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Maliszewska, O.; Plenis, A.; Oledzka, I.; Kowalski, P.; Miekus, N.; Bien, E.; Krawczyk, M.A.; Adamkiewicz-Drozynska, E.; Baczek, T. Optimization of LC method for the quantification of doxorubicin in plasma and urine samples in view of pharmacokinetic, biomedical and drug monitoring therapy studies. J. Pharm. Biomed. Anal. 2018, 158, 376–385. [Google Scholar] [CrossRef]
- Hempel, G.; Schulze-Westhoff, P.; Flege, S.; Laubrock, N.; Boos, J. Therapeutic drug monitoring of doxorubicin in paediatric oncology using capillary electrophoresis. Electrophoresis 1998, 19, 2939–2943. [Google Scholar] [CrossRef]
- Kaushik, D.; Bansal, G. Characterization of degradation products of idarubicin through LC-UV, MSn and LC-MS-TOF studies. J. Pharm. Biomed. Anal. 2013, 85, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.L.; Lum, B.L.; Sikic, B.I. Rapid determination of PEGylated liposomal doxorubicin and its major metabolite in human plasma by ultraviolet-visible high-performance liquid chromatography. J. Chromatogr. B 2002, 779, 259–269. [Google Scholar] [CrossRef]
- Sakai-Kato, K.; Saito, E.; Ishikura, K.; Kawanishi, T. Analysis of intracellular doxorubicin and its metabolites by ultra-high-performance liquid chromatography. J. Chromatogr. B 2010, 878, 1466–1470. [Google Scholar] [CrossRef]
- Hassan, H.N.A.; Barsoum, B.N.; Habib, I.H.I. Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. J. Pharm. Biomed. Anal. 1999, 20, 315–320. [Google Scholar] [CrossRef]
- Jouyban, A.; Samadi, A.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M. A microscale spectrophotometric method for quantification of doxorubicin in exhaled breath condensate. Anal. Methods 2019, 11, 648–653. [Google Scholar] [CrossRef]
- Yang, X.P.; Qian, F.; Xie, L.X.; Yang, X.C.; Cheng, X.M.; Choi, M.M.F. Determination of doxorubicin in plasma by using CE coupled with in- column tapered optic-fiber light-emitting diode induced fluorescence detection. Electrophoresis 2014, 35, 762–769. [Google Scholar] [CrossRef]
- Yang, X.P.; Gao, H.H.; Qian, F.; Zhao, C.; Liao, X.J. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J. Pharm. Biomed. Anal. 2016, 117, 118–124. [Google Scholar] [CrossRef]
- Martinez Ferreras, F.; Wolfbeis, O.S.; Gorris, H.H. Dual lifetime referenced fluorometry for the determination of doxorubicin in urine. Anal. Chim. Acta 2012, 729, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Schenone, A.V.; Culzoni, M.J.; Campiglia, A.D.; Goicoechea, H.C. Total synchronous fluorescence spectroscopic data modeled with first- and second-order algorithms for the determination of doxorubicin in human plasma. Anal. Bioanal. Chem. 2013, 405, 8515–8523. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.A.; Mousavi, S.M.; Bahrani, S.; Gholami, A.; Chiang, W.H.; Yousefi, K.; Omidifar, N.; Rao, N.V.; Ramakrishna, S.; Babapoor, A.; et al. Bio-enhanced polyrhodanine/graphene Oxide/Fe3O4 nanocomposite with kombucha solvent supernatant as ultra-sensitive biosensor for detection of doxorubicin hydrochloride in biological fluids. Mater. Chem. Phys. 2022, 279, 10. [Google Scholar] [CrossRef]
- Lucas, A.T.; O’Neal, S.K.; Santos, C.M.; White, T.F.; Zamboni, W.C. A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues. J. Pharm. Biomed. Anal. 2016, 119, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.Y.; Shi, K.M.; Zhang, C.; Ren, J.J.; Cui, M.; Li, N.; Ji, X.P.; Wang, R. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem. J. 2022, 182, 9. [Google Scholar] [CrossRef]
- Saito, S. SELEX-based DNA Aptamer Selection: A Perspective from the Advancement of Separation Techniques. Anal. Sci. 2021, 37, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Ferapontova, E.E.; Gothelf, K.V. Recent Advances in Electrochemical Aptamer-Based Sensors. Curr. Org. Chem. 2011, 15, 498–505. [Google Scholar] [CrossRef]
- Song, S.P.; Wang, L.H.; Li, J.; Zhao, J.L.; Fan, C.H. Aptamer-based biosensors. Trac-Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, J.T.; Sun, S.; Ming, T.; Wang, Y.; Luo, J.P.; Xiao, G.H.; Li, X.R.; Xie, J.Y.; Cai, X.X. New electrochemical method for programmed death-ligand 1 detection based on a paper-based microfluidic aptasensor. Bioelectrochemistry 2021, 140, 7. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Ming, T.; Luo, J.P.; Xing, Y.; Liu, J.T.; Xiong, Y.; Ma, Y.Y.; Yan, S.; Yang, Y.; et al. An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood. Commun. Biol. 2021, 4, 9. [Google Scholar] [CrossRef]
- Cao, C.M.; Jin, R.H.; Wei, H.; Liu, Z.N.; Ni, S.N.; Liu, G.J.; Young, H.A.; Chen, X.; Liu, G.Z. Adaptive in vivo device for theranostics of inflammation: Real-time monitoring of interferon-gamma and aspirin. Acta Biomater. 2020, 101, 372–383. [Google Scholar] [CrossRef]
- Guo, Y.J.; Chen, Y.H.; Zhao, Q.; Shuang, S.M.; Dong, C. Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets. Electroanalysis 2011, 23, 2400–2407. [Google Scholar] [CrossRef]
- Yanez-Sedeno, P.; Gonzalez-Cortes, A.; Campuzano, S.; Pingarron, J.M. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. Nanomaterials 2020, 10, 2556. [Google Scholar] [CrossRef]
- Su, S.; Sun, Q.; Gu, X.D.; Xu, Y.Q.; Shen, J.L.; Zhu, D.; Chao, J.; Fan, C.H.; Wang, L.H. Two-dimensional nanomaterials for biosensing applications. Trac-Trends Anal. Chem. 2019, 119, 14. [Google Scholar] [CrossRef]
- Feng, H.B.; Cheng, R.; Zhao, X.; Duan, X.F.; Li, J.H. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Yang, T.; Zhao, C.Z.; Jiao, K. Electrochemical logic aptasensor based on graphene. Sens. Actuator B-Chem. 2012, 169, 255–260. [Google Scholar] [CrossRef]
- Chang, Z.; Zhu, B.C.; Liu, J.J.; Zhu, X.; Xu, M.T.; Travas-Sejdic, J. Electrochemical aptasensor for 17 beta-estradiol using disposable laser scribed graphene electrodes. Biosens. Bioelectron. 2021, 185, 7. [Google Scholar] [CrossRef]
- Wan, H.; Sun, Q.Y.; Li, H.B.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuator B-Chem. 2015, 209, 336–342. [Google Scholar] [CrossRef]
- Ivandini, T.A.; Luhur, M.S.P.; Khalil, M.; Einaga, Y. Modification of boron-doped diamond electrodes with gold-palladium nanoparticles for an oxygen sensor. Analyst 2021, 146, 2842–2850. [Google Scholar] [CrossRef]
- Zhao, L. Horseradish Peroxidase Labelled-Sandwich Electrochemical Sensor Based on Ionic Liquid-Gold Nanoparticles for Lactobacillus brevis. Micromachines 2021, 12, 75. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, L.; Chu, Z.Y.; Jin, W.Q. A highly sensitive electrochemical IFN-gamma aptasensor based on a hierarchical graphene/AuNPs electrode interface with a dual enzyme-assisted amplification strategy. RSC Adv. 2017, 7, 45053–45060. [Google Scholar] [CrossRef] [Green Version]
- Wochner, A.; Menger, M.; Orgel, D.; Cech, B.; Rimmele, M.; Erdmann, V.A.; Glokler, J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal. Biochem. 2008, 373, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ates, A.K.; Er, E.; Celikkan, H.; Erk, N. Reduced graphene oxide/platinum nanoparticles/nafion nanocomposite as a novel 2D electrochemical sensor for voltammetric determination of aliskiren. New J. Chem. 2017, 41, 15320–15326. [Google Scholar] [CrossRef]
- Khan, N.I.; Maddaus, A.G.; Song, E.; Biosensors Editorial, O. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme. Biosensors 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talemi, R.P.; Mousavi, S.M.; Afruzi, H. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 73, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Greene, R.F.; Collins, J.M.; Jenkins, J.F.; Speyer, J.L.; Myers, C.E. Plasma Pharmacokinetics of Adriamycin and Adriamycinol–Implications for the Design of Invitro Experiments and Treatment Protocols. Cancer Res. 1983, 43, 3417–3421. [Google Scholar]
- Taei, M.; Hasanpour, F.; Salavati, H.; Mohammadian, S. Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Microchim. Acta 2016, 183, 49–56. [Google Scholar] [CrossRef]
- Bahner, N.; Reich, P.; Frense, D.; Menger, M.; Schieke, K.; Beckmann, D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal. Bioanal. Chem. 2018, 410, 1453–1462. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Hoggarth, D.A.; Maliniak, D.; Ploense, K.; White, R.J.; Woodward, N.; Hsieh, K.; Bonham, A.J.; Eisenstein, M.; Kippin, T.E.; et al. Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Sci. Transl. Med. 2013, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Hashemzadeh, N.; Hasanzadeh, M.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J. Pharm. Anal. 2016, 6, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, B.; Saghebdoust, M.; Sorkhe, A.M.; Majidi, N. Generation of a doxorubicin immunosensor based on a specific monoclonal antibody-nanogold-modified electrode. Electrochim. Acta 2011, 56, 5702–5706. [Google Scholar] [CrossRef]
- Moriyama, H.; Ogata, G.; Nashimoto, H.; Sawamura, S.; Furukawa, Y.; Hibino, H.; Kusuhara, H.; Einaga, Y. A rapid and simple electrochemical detection of the free drug concentration in human serum using boron-doped diamond electrodes. Analyst 2022, 147, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
Electrode | Linear Range (nM) | Detection Limit (nM) | Reference |
---|---|---|---|
CPE/CoFe2O4/MWCNTs | 0.05–1150 | 0.01 | [57] |
Gold electrode/aptamer | 31–125 | 28 | [58] |
Microfluidic chip/aptamer | 0.01–10 | 10 | [59] |
GCE/PR/GO/Fe3O4/K | 60–950 | 8 | [31] |
GCE/GQD | 18–3600 | 16 | [60] |
Gold electrode/AuNPs/antibody | 0.0084–0.294 | 0.00153 | [61] |
BBD | 5–50 | 1.63 | [62] |
Gold wire/rGO/AuNPs/aptamer | 300–6000 | 100 | This work |
Sample | Added (μM) | Detected (μM) | Recovery (%) |
---|---|---|---|
Human serum | 0.5 | 0.474 | 94.8 |
1 | 1.071 | 107.1 | |
2 | 2.180 | 109.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Luo, J.; Jing, L.; Wang, Y.; Shen, H.; Yu, R.; Sun, S.; Xing, Y.; Ming, T.; Liu, M.; et al. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. Nanomaterials 2023, 13, 1223. https://doi.org/10.3390/nano13071223
Kong F, Luo J, Jing L, Wang Y, Shen H, Yu R, Sun S, Xing Y, Ming T, Liu M, et al. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. Nanomaterials. 2023; 13(7):1223. https://doi.org/10.3390/nano13071223
Chicago/Turabian StyleKong, Fanli, Jinping Luo, Luyi Jing, Yiding Wang, Huayu Shen, Rong Yu, Shuai Sun, Yu Xing, Tao Ming, Meiting Liu, and et al. 2023. "Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin" Nanomaterials 13, no. 7: 1223. https://doi.org/10.3390/nano13071223
APA StyleKong, F., Luo, J., Jing, L., Wang, Y., Shen, H., Yu, R., Sun, S., Xing, Y., Ming, T., Liu, M., Jin, H., & Cai, X. (2023). Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. Nanomaterials, 13(7), 1223. https://doi.org/10.3390/nano13071223