Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials
2.2. Fabrication of SERS Substrates
2.3. Characterization
2.4. SERS Measurement
2.5. FDTD Simulation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Chen, Y.; Liu, Z.; Liu, Y.; Wang, Y.; Liu, P.; Liu, Q.; Bi, K.; Shu, Z.; Zhang, Y.; et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. Microsyst. Nanoeng. 2019, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Zavaleta, C.L.; Smith, B.R.; Walton, I.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M.J.; Gambhir, S.S. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 13511–13516. [Google Scholar] [CrossRef]
- Andreou, C.; Neuschmelting, V.; Tschaharganeh, D.-F.; Huang, C.-H.; Oseledchyk, A.; Iacono, P.; Karabeber, H.; Colen, R.R.; Mannelli, L.; Lowe, S.W.; et al. Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles. ACS Nano 2016, 10, 5015–5026. [Google Scholar] [CrossRef]
- Wagner, M.; Lin, K.-Y.A.; Oh, W.-D.; Lisak, G. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption—A mini review. J. Hazard. Mater. 2021, 413, 125325. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Zhang, S.; Liu, Z.; Jiang, S. Plasmon-induced hot carrier separation across multicomponent heterostructure in Ag@AgCl@g-C3N4 composites for recyclable detection-removal of organic pollutions via SERS sensing. Appl. Surf. Sci. 2023, 610, 155604. [Google Scholar] [CrossRef]
- Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M.-Y. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Anal. Chem. 2012, 84, 255–261. [Google Scholar] [CrossRef]
- Han, L.; Liu, H.; Zhang, J.; Zhou, J.; Jiang, T. Recyclable SERS monitoring of food quality based on the shrubby morphology of titania oxide-triggered electromagnetic “hotspots”. Appl. Surf. Sci. 2022, 604, 154456. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, F.; Guang, S.; Cai, Z. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis. Appl. Surf. Sci. 2018, 436, 111–116. [Google Scholar] [CrossRef]
- Augustine, S.; Sooraj, K.; Pachchigar, V.; Krishna, C.M.; Ranjan, M. SERS based detection of Dichlorvos pesticide using silver nanoparticles arrays: Influence of array wavelength/amplitude. Appl. Surf. Sci. 2021, 544, 148878. [Google Scholar] [CrossRef]
- Lim, D.-K.; Jeon, K.-S.; Hwang, J.-H.; Kim, H.; Kwon, S.; Suh, Y.D.; Nam, J.-M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460. [Google Scholar] [CrossRef]
- Kang, M.; Park, S.-G.; Jeong, K.-H. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanopillars. Sci. Rep. 2015, 5, 14790. [Google Scholar] [CrossRef]
- Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R.P.; Krahne, R.; Rondanina, E.; Leoncini, M.; Liberale, C.; De Angelis, F.; et al. 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few- Molecule Surface-Enhanced Raman Scattering. Adv. Mater. 2014, 26, 2353–2358. [Google Scholar] [CrossRef]
- Taylor, R.W.; Coulston, R.J.; Biedermann, F.; Mahajan, S.; Baumberg, J.J.; Scherman, O.A. In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Lett. 2013, 13, 5985–5990. [Google Scholar] [CrossRef]
- Tian, S.; Neumann, O.; McClain, M.J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N.J. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett. 2017, 17, 5071–5077. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, X.; Chen, Y.; Xiang, Q.; Duan, H. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy. Nanotechnology 2017, 28, 45303. [Google Scholar] [CrossRef]
- Chung, T.; Koker, T.; Pinaud, F. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes. Small 2016, 12, 5891–5901. [Google Scholar] [CrossRef]
- Oh, Y.-J.; Jeong, K.-H. Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering. Adv. Mater. 2012, 24, 2234–2237. [Google Scholar] [CrossRef]
- Si, S.; Liang, W.; Sun, Y.; Huang, J.; Ma, W.; Liang, Z.; Bao, Q.; Jiang, L. Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates. Adv. Funct. Mater. 2016, 26, 8137–8145. [Google Scholar] [CrossRef]
- Cai, H.; Wu, Y.; Dai, Y.; Pan, N.; Tian, Y.; Luo, Y.; Wang, X. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates. Opt. Express 2016, 24, 20808–20815. [Google Scholar] [CrossRef]
- Zheng, M.; Yang, Y.; Zhu, D.; Chen, Y.; Shu, Z.; Berggren, K.K.; Soljačić, M.; Duan, H. Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Lett. 2021, 21, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.S.; Hu, M.; Naumov, I.; Kim, A.; Wu, W.; Bratkovsky, A.M.; Li, X.; Williams, R.S.; Li, Z. Hot-Spot Engineering in Polygonal Nanofinger Assemblies for Surface Enhanced Raman Spectroscopy. Nano Lett. 2011, 11, 2538–2542. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Jans, H.; Xu, X.; Verellen, N.; Vos, I.; Okumura, Y.; Moshchalkov, V.V.; Lagae, L.; Van Dorpe, P. 300 mm Wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates. Nanoscale 2014, 6, 12391–12396. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-M.; Lee, S.-J.; Kim, C.-L. Assessment of the Physical, Mechanical, and Tribological Properties of PDMS Thin Films Based on Different Curing Conditions. Materials 2021, 14, 4489. [Google Scholar] [CrossRef] [PubMed]
- Nabesawa, H.; Hitobo, T.; Wakabayashi, S.; Asaji, T.; Abe, T.; Seki, M. Polymer surface morphology control by reactive ion etching for microfluidic devices. Sens. Actuators B Chem. 2008, 132, 637–643. [Google Scholar] [CrossRef]
- Zeng, P.; Shu, Z.; Zhang, S.; Liang, H.; Zhou, Y.; Ba, D.; Feng, Z.; Zheng, M.; Wu, J.; Chen, Y.; et al. Fabrication of single-nanometer metallic gaps via spontaneous nanoscale dewetting. Nanotechnology 2021, 32, 205302. [Google Scholar] [CrossRef]
- Zeng, P.; Liu, Q.; Zheng, M.; Chen, Y.; Liu, G.; Duan, H. Ion-beam-etching based lift-off for reliable patterning of dense and inverse metallic nanostructures towards 10-nm scale. Microelectron. Eng. 2020, 232, 111406. [Google Scholar] [CrossRef]
- Lévêque, G.; Martin, O.J. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express 2006, 14, 9971–9981. [Google Scholar] [CrossRef]
- Lévêque, G.; Martin, O.J. Tunable composite nanoparticle for plasmonics. Opt. Lett. 2006, 31, 2750–2752. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Chen, Y.; Zheng, M.; Xiang, Q.; Tang, Z.; Zhang, G.; Duan, H. Sensitive Surface-Enhanced Raman Scattering Detection Using On-Demand Postassembled Particle-on-Film Structure. ACS Appl. Mater. Interfaces 2017, 9, 31102–31110. [Google Scholar] [CrossRef]
- Gong, Z.; Du, H.; Cheng, F.; Wang, C.; Wang, C.; Fan, M. Fabrication of SERS Swab for Direct Detection of Trace Explosives in Fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937. [Google Scholar] [CrossRef]
- Shende, C.; Inscore, F.; Sengupta, A.; Stuart, J.; Farquharson, S. Rapid extraction and detection of trace Chlorpyrifos-methyl in orange juice by surface-enhanced Raman spectroscopy. Sens. Instrum. Food Qual. Saf. 2010, 4, 101–107. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H. Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. Eur. Food Res. Technol. 2020, 246, 239–251. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, X.; Xu, L.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B Chem. 2017, 241, 1008–1013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, P.; Zheng, M.; Chen, H.; Chen, G.; Shu, Z.; Chen, L.; Liang, H.; Zhou, Y.; Zhao, Q.; Duan, H. Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection. Nanomaterials 2023, 13, 1733. https://doi.org/10.3390/nano13111733
Zeng P, Zheng M, Chen H, Chen G, Shu Z, Chen L, Liang H, Zhou Y, Zhao Q, Duan H. Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection. Nanomaterials. 2023; 13(11):1733. https://doi.org/10.3390/nano13111733
Chicago/Turabian StyleZeng, Pei, Mengjie Zheng, Hao Chen, Guanying Chen, Zhiwen Shu, Lei Chen, Huikang Liang, Yuting Zhou, Qian Zhao, and Huigao Duan. 2023. "Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection" Nanomaterials 13, no. 11: 1733. https://doi.org/10.3390/nano13111733
APA StyleZeng, P., Zheng, M., Chen, H., Chen, G., Shu, Z., Chen, L., Liang, H., Zhou, Y., Zhao, Q., & Duan, H. (2023). Wafer-Level Highly Dense Metallic Nanopillar-Enabled High-Performance SERS Substrates for Molecular Detection. Nanomaterials, 13(11), 1733. https://doi.org/10.3390/nano13111733