Effects of Oxygen on Lattice Defects in Single-Crystalline Mg2Si Thermoelectrics
Abstract
:1. Introduction
2. Calculation and Experimental Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.-S.; Kim, S.; Xie, Z.; Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 2018, 3, 194–210. [Google Scholar] [CrossRef]
- Balaraman, A.A.; Dutta, S. Inorganic dielectric materials for energy storage applications: A review. J. Phys. D Appl. Phys. 2022, 55, 183002. [Google Scholar] [CrossRef]
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-S.; Zhang, B.-P.; Li, J.-F.; Zhao, L.-D. Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D Appl. Phys. 2007, 40, 6784–6790. [Google Scholar] [CrossRef]
- Jiang, G.; He, J.; Zhu, T.; Fu, C.; Liu, X.; Hu, L.; Zhao, X. High Performance Mg2(Si,Sn) Solid Solutions: A Point Defect Chemistry Approach to Enhancing Thermoelectric Properties. Adv. Funct. Mater. 2014, 24, 3776–3781. [Google Scholar] [CrossRef]
- Kubouchi, M.; Hayashi, K.; Miyazaki, Y. Quantitative analysis of interstitial Mg in Mg2Si studied by single crystal X-ray diffraction. J. Alloys Compd. 2014, 617, 389–392. [Google Scholar] [CrossRef]
- Kubouchi, M.; Ogawa, Y.; Hayashi, K.; Takamatsu, T.; Miyazaki, Y. Effect of Interstitial Mg in Mg2+xSi on Electrical Conductivity and Seebeck Coefficient. J. Electron. Mater. 2016, 45, 1589–1593. [Google Scholar] [CrossRef]
- Kubouchi, M.; Hayashi, K.; Miyazaki, Y. Electronic structure and thermoelectric properties of boron doped Mg2Si. Scr. Mater. 2016, 123, 59–63. [Google Scholar] [CrossRef]
- Tamaki, M.; Sato, H.K.; Kanno, T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance. Adv. Mater. 2016, 28, 10182–10187. [Google Scholar] [CrossRef]
- Hayashi, K.; Eguchi, M.; Miyazaki, Y. Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys. J. Electron. Mater. 2017, 42, 2710–2716. [Google Scholar] [CrossRef]
- Wu, D.; Wu, L.; He, D.; Zhao, L.-D.; Li, W.; Wu, M.; Jin, M.; Xu, J.; Jiang, J.; Huang, L.; et al. Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy 2017, 35, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Saito, W.; Hayashi, K.; Nagai, H.; Miyazaki, Y. Preparation and thermoelectric properties of mixed valence compound Sn2S3. JPN J. Appl. Phys. 2017, 56, 061201. [Google Scholar] [CrossRef]
- Hayashibara, Y.; Hayashi, K.; Ando, I.; Kubouchi, M.; Ogawa, Y.; Saito, W.; Miyazaki, Y. Fabrication and Thermoelectric Properties of Al/Mg2Si Composite Materials. Mater. Trans. 2018, 59, 1041–1045. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hayashi, K.; Miyazaki, Y. Design and fabrication of full-Heusler compound with positive Seebeck coefficient as a potential thermoelectric material. Scr. Mater. 2018, 150, 130–133. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, B.; Wu, Y.; Zhu, T.; Fang, T.; Yang, Y.; Liu, J.; Ye, B.; Zhao, X. Evolution of the Intrinsic Point Defects in Bismuth Telluride-Based Thermoelectric Materials. ACS Appl. Mater. Interfaces 2019, 11, 41424–41431. [Google Scholar] [CrossRef]
- Saito, W.; Hayashi, K.; Dong, J.; Li, J.-F.; Miyazaki, Y. Control of the Thermoelectric Properties of Mg2Sn Single Crystals via Point-Defect Engineering. Sci. Rep. 2020, 10, 2020. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Saito, W.; Sugimoto, K.; Ohoyama, K.; Hayashi, K.; Happo, N.; Harada, M.; Oikawa, K.; Inamura, Y.; Miyazaki, Y. Preparation, thermoelectric properties, and crystal structure of boron-doped Mg2Si single crystals. AIP Adv. 2020, 10, 035115, Erratum in AIP Adv. 2021, 11, 029903. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hayashi, K.; Dong, J.; Li, J.-F.; Miyazaki, Y. Distinct impact of order degree on thermoelectric power factor of p-type full-Heusler Mn2VAl compounds. Mater. Res. Express 2020, 7, 055503. [Google Scholar] [CrossRef]
- Huang, Y.; Hayashi, K.; Miyazaki, Y. Electron Conduction Mechanism of Deficient Half-Heusler VFeSb Compound Revealed by Crystal and Electronic Structure Analyses. Chem. Mater. 2020, 32, 5173–5181. [Google Scholar] [CrossRef]
- Yoshioka, S.; Hayashi, K.; Yokoyama, A.; Saito, W.; Li, H.; Takamatsu, T.; Miyazaki, Y. Crystal structure, electronic structure and thermoelectric properties of β- and γ-Zn4Sb3 thermoelectrics: A (3+1)-dimensional superspace group approach. J. Mater. Chem. C 2020, 8, 9205–9212. [Google Scholar] [CrossRef]
- Hayashi, K.; Miyazaki, Y.; Saito, W.; Kubouchi, M.; Ogawa, Y.; Suzuki, S.; Hayashibara, Y.; Ando, I. Thermoelectric properties of Mg2Si and its derivatives: Effects of lattice defects and secondary phases. In Thermoelectric Materials; Kurosaki, K., Takagiwa, Y., Shi, X., Eds.; De Gruyter: Berlin, Germany, 2020; pp. 99–116. [Google Scholar]
- Hayashi, K.; Li, H.; Eguchi, M.; Nagashima, Y.; Miyazaki, Y. Magnetic Full-Heusler Compounds for Thermoelectric Applications. In Magnetic Materials and Magnetic Levitation; Sahu, D.R., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 4. [Google Scholar]
- Saito, W.; Hayashi, K.; Huang, Z.; Dong, J.; Li, J.-F.; Miyazaki, Y. Enhancing the Thermoelectric Performance of Mg2Sn Single Crystals via Point Defect Engineering and Sb Doping. ACS Appl. Mater. Interfaces 2020, 12, 57888–57897. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Tamaki, H.; Yoshiya, M.; Uchiyama, H.; Maki, S.; Takata, M.; Miyazaki, Y. High-Density Frenkel Defects as Origin of N-Type Thermoelectric Performance and Low Thermal Conductivity in Mg3Sb2-Based Materials. Adv. Funct. Mater. 2021, 31, 2008469. [Google Scholar] [CrossRef]
- Li, H.; Hayashi, K.; Nagashima, Y.; Yoshioka, S.; Dong, J.; Li, J.-F.; Miyazaki, Y. Effects of Disorder on the Electronic Structure and Thermoelectric Properties of an Inverse Full-Heusler Mn2CoAl Alloy. Chem. Mater. 2021, 33, 2543–2547. [Google Scholar] [CrossRef]
- Yoshioka, S.; Hayashi, K.; Yokoyama, A.; Saito, W.; Miyazaki, Y. Crystal structure, microstructure, and electronic transport properties of β-Zn4Sb3 thermoelectrics: Effects of Zn intercalation and deintercalation. Mater. Today Energy 2021, 21, 100723. [Google Scholar] [CrossRef]
- Saito, W.; Hayashi, K.; Huang, Z.; Sugimoto, K.; Ohoyama, K.; Happo, N.; Harada, M.; Oikawa, K.; Inamura, Y.; Hayashi, K.; et al. Chemical-Pressure-Induced Point Defects Enable Low Thermal Conductivity for Mg2Sn and Mg2Si Single Crystals. ACS Appl. Energy Mater. 2021, 4, 5123–5131. [Google Scholar] [CrossRef]
- Huang, Y.; Hayashi, K.; Miyazaki, Y. Outstanding thermoelectric performance of n-type half-Heusler V(Fe1-xCox)Sb compounds at room-temperature. Acta Mater. 2021, 215, 117022. [Google Scholar] [CrossRef]
- Huang, Z.; Hayashi, K.; Saito, W.; Miyazaki, Y. Realizing p-type Mg2Sn Thermoelectrics via Ga-Doping and Point Defect Engineering. ACS Appl. Energy Mater. 2021, 4, 13044–13050. [Google Scholar] [CrossRef]
- Hayashi, K. Enhancement of thermoelectric performance of Mg2Sn single crystals via lattice-defect engineering. JSAP Rev. 2022, 2022, 220403. [Google Scholar]
- Huang, Z.; Hayashi, K.; Saito, W.; Pei, J.; Li, J.-F.; Miyazaki, Y. Enhanced Thermoelectric Performance of p-type Mg2Sn Single Crystals via Multi-scale Defect Engineering. J. Mater. Chem. A 2023, 11, 2652–2660. [Google Scholar] [CrossRef]
- Ning, H.; Mastrorillo, G.D.; Grasso, S.; Du, B.; Mori, T.; Hu, C.; Xu, Y.; Simpson, K.; Maizza, G.; Reece, M.J. Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering. J. Mater. Chem. A 2015, 3, 17426–17432. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Davis, J.D.; Poltavets, V.V.; Hogan, T.P. The p-type Mg2LixSi0.4Sn0.6 thermoelectric materials synthesized by a B2O3 encapsulation method using Li2CO3 as the doping agent. J. Mater. Chem. C 2016, 4, 929–934. [Google Scholar] [CrossRef]
- Kato, A.; Yagi, T.; Fukusako, N. First-principles studies of intrinsic point defects in magnesium silicide. J. Phys. Condens. Matter 2009, 21, 205801. [Google Scholar] [CrossRef]
- Jund, P.; Viennois, R.; Colinet, C.; Hug, G.; Fèvre, M.; Tédenac, J.-C. Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations. J. Phys. Condens. Matter 2013, 25, 035403. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xi, L.; Qiu, W.; Yang, J.; Zhu, T.; Zhao, X.; Zhang, W. Significant roles of intrinsic point defects in Mg2X (X = Si, Ge, Sn) thermoelectric materials. Adv. Electron. Mater. 2016, 2, 1500284. [Google Scholar] [CrossRef]
- Farahi, N.; Prabhudev, S.; Botton, G.A.; Zhao, J.; Tse, J.S.; Liu, Z.; Salvador, J.R.; Kleinke, H. Local structure and thermoelectric properties of Mg2Si0.977-xGexBi0.023 (0.1 ≤ x ≤ 0.4). J. Alloys Compd. 2015, 644, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Sohma, M.; Suemasu, T. Effect of oxygen incorporation in the Mg2Si lattice on its conductivity type—A possible reason of the p-type conductivity of postannealed Mg2Si thin film. J. Alloys Compd. 2016, 676, 91–95. [Google Scholar] [CrossRef]
- Kurokawa, M.; Shimizu, T.; Uehara, M.; Katagiri, A.; Akiyama, K.; Matsushima, M.; Uchida, H.; Kimura, Y.; Funakubo, H. Control of p- and n-type Conduction in Thermoelectric Non-doped Mg2Si Thin Films Prepared by Sputtering Method. MRS Adv. 2018, 3, 1355–1359. [Google Scholar] [CrossRef]
- Möller, H.J. The movement of dissociated dislocations in the diamond-cubic structure. Acta Metall. 1978, 26, 963–973. [Google Scholar] [CrossRef]
- Umerski, A.; Jones, R. The interaction of oxygen with dislocation cores in silicon. Philos. Mag. A 1993, 67, 905–915. [Google Scholar] [CrossRef]
- Yonenaga, I.; Sumino, K. Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J. Appl. Phys. 1996, 80, 734–738. [Google Scholar] [CrossRef]
- Ide, T.; Harada, H.; Miyamura, Y.; Imai, M.; Nakano, S.; Kakimoto, K. Relationship between Dislocation Density and Oxygen Concentration in Silicon Crystals during Directional Solidification. Crystals 2018, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Schwarz, K., Ed.; Techn. Universität Wien: Wien, Austria, 2001. [Google Scholar]
- AkaiKKR Machikaneyama, Ab-Initio Electronic-Structure Calculation Code. Available online: http://kkr.issp.u-tokyo.ac.jp/ (accessed on 6 October 2022).
- Shi, G.; Kioupakis, E. Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients. J. Appl. Phys. 2018, 123, 085114. [Google Scholar] [CrossRef]
- Szöke, A. X-ray and electron holography using a local reference beam. AIP Conf. Proc. 1986, 147, 361–367. [Google Scholar]
- Matsushita, T.; Yoshigoe, A.; Agui, A. Electron holography: A maximum entropy reconstruction scheme. Europhys. Lett. 2005, 71, 597–603. [Google Scholar] [CrossRef]
- Matsushita, T.; Guo, F.Z.; Matsui, F.; Kato, Y.; Daimon, H. Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram. Phys. Rev. B 2007, 75, 085419. [Google Scholar] [CrossRef]
- Matsushita, T.; Guo, F.Z.; Suzuki, M.; Matsui, F.; Daimon, H.; Hayashi, K. Reconstruction algorithm for atomic-resolution holography using translational symmetry. Phys. Rev. B 2008, 78, 144111. [Google Scholar] [CrossRef]
- Matsushita, T.; Matsui, F.; Daimon, H.; Hayashi, K. Photoelectron holography with improved image reconstruction. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 195–200. [Google Scholar] [CrossRef]
- Matsui, H.; Matsui, F.; Maejima, N.; Matsushita, T.; Daimon, H. Stacking registry determination of graphene grown on the SiC(0001) by photoelectron holography. Surf. Sci. 2015, 635, 1–4. [Google Scholar] [CrossRef]
- Matsui, F.; Eguchi, R.; Nishiyama, S.; Izumi, M.; Uesugi, E.; Goto, H.; Matsushita, T.; Sugita, K.; Daimon, H.; Hamamoto, Y.; et al. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. Sci. Rep. 2016, 6, 36258. [Google Scholar] [CrossRef] [Green Version]
- Fukami, S.; Taguchi, M.; Adachi, Y.; Sakaguchi, I.; Watanabe, K.; Kinoshita, T.; Muro, T.; Matsushita, T.; Matsui, F.; Daimon, H.; et al. Correlation Between High Gas Sensitivity and Dopant Structure in W-doped ZnO. Phys. Rev. Appl. 2017, 7, 064029. [Google Scholar] [CrossRef]
- Tsutsui, K.; Matsushita, T.; Natori, K.; Muro, T.; Morikawa, Y.; Hoshii, T.; Kakushima, K.; Wakabayashi, H.; Hayashi, K.; Matsui, F.; et al. Individual Atomic Imaging of Multiple Dopant Sites in As-Doped Si Using Spectro-Photoelectron Holography. Nano Lett. 2017, 17, 7533–7538. [Google Scholar] [CrossRef]
- Matsushita, T. Algorithm for Atomic Resolution Holography Using Modified L1-Regularized Linear Regression and Steepest Descent Method. Phys. Status Solidi B 2018, 255, 1800091. [Google Scholar] [CrossRef]
- Yokoya, T.; Terashima, K.; Takeda, A.; Fukura, T.; Fujiwara, H.; Muro, T.; Kinoshita, T.; Kato, H.; Yamasaki, S.; Oguchi, T.; et al. Asymmetric Phosphorus Incorporation in Homoepitaxial P-Doped (111) Diamond Revealed by Photoelectron Holography. Nano Lett. 2019, 19, 5915–5919. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ang, A.K.R.; Kimura, K.; Matsushita, T.; Hirose, Y.; Oka, D.; Hayashi, K. Anion arrangement analysis of oxynitride perovskite thin film with inverse photoelectron holography. J. Electron Spectr. Relat. Phenom. 2021, 246, 147018. [Google Scholar] [CrossRef]
- Tang, J.; Takeuchi, S.; Tanaka, M.; Tomita, H.; Hashimoto, Y.; Nagata, T.; Chen, J.; Ohkochi, T.; Kotani, Y.; Matsushita, T.; et al. Direct Observation of Atomic Structures and Chemical States of Active and Inactive Dopant Sites in Mg-Doped GaN. ACS Appl. Electron. Mater. 2022, 4, 4719–4723. [Google Scholar] [CrossRef]
- Uenuma, M.; Kuwaharada, S.; Tomita, H.; Tanaka, M.; Sun, Z.; Hashimoto, Y.; Fujii, M.N.; Matsushita, T.; Uraoka, Y. Atomic structure analysis of gallium oxide at the Al2O3/GaN interface using photoelectron holography. Appl. Phys. Express 2022, 15, 085501. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Kataoka, N.; Setoguchi, T.; Hashimoto, Y.; Takeuchi, S.; Koga, S.; Muro, T.; Demura, S.; Noguchi, K.; et al. Incorporation Site and Valence State of Sn Atoms in Sn-Substituted La(O,F)BiS2 Superconductor. J. Phys. Soc. Jpn. 2022, 91, 054602. [Google Scholar] [CrossRef]
- Takeuchi, S.; Hashimoto, Y.; Daimon, H.; Matsushita, T. High-precision atomic image reconstruction from photoelectron hologram of O on W(110) by SPEA-L1. J. Electron Spectr. Relat. Phenom. 2022, 256, 147177. [Google Scholar] [CrossRef]
- Fujii, M.N.; Tanaka, M.; Tsuno, T.; Hashimoto, Y.; Tomita, H.; Takeuchi, S.; Koga, S.; Sun, Z.; Enriquez, J.I.; Morikawa, Y.; et al. Atomic Imaging of Interface Defects in an Insulating Film on Diamond. Nano Lett. 2023, 23, 1189–1194. [Google Scholar] [CrossRef]
- Senba, Y.; Ohashi, H.; Kotani, Y.; Nakamura, T.; Muro, T.; Ohkochi, T.; Tsuji, N.; Kishimoto, H.; Miura, T.; Tanaka, M.; et al. Upgrade of beamline BL25SU for soft x-ray imaging and spectroscopy of solid using nano- and micro-focused beams at SPring-8. AIP Conf. Proc. 2016, 1741, 030044. [Google Scholar]
- Muro, T.; Ohkochi, T.; Kato, Y.; Izumi, Y.; Fukami, S.; Fujiwara, H.; Matsushita, T. Wide-angle display-type retarding field analyzer with high energy and angular resolutions. Rev. Sci. Instrum. 2017, 88, 123106. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Zwolenski, P.; Tobola, J.; Kaprzyk, S. KKR-CPA study of electronic structure and relative stability of Mg2X (X = Si, Ge, Sn) thermoelectrics containing point defects. J. Alloys Compd. 2015, 627, 85–90. [Google Scholar] [CrossRef]
- Esaka, F.; Nojima, T.; Udono, H.; Magara, M.; Yamamoto, H. Non-destructive depth analysis of the surface oxide layer on Mg2Si with XPS and XAS. Surf. Interface Anal. 2016, 48, 432–435. [Google Scholar] [CrossRef]
- Shchukarev, A.V.; Korolkov, D.V. XPS study of group IA carbonates. Cent. Eur. J. Chem. 2004, 2, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database; Wiley Interscience: New York, NY, USA, 1992. [Google Scholar]
- Du, Z.; Zhu, T.; Chen, Y.; He, J.; Gao, H.; Jiang, G.; Tritt, T.M.; Zhao, X. Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 2012, 22, 6838–6844. [Google Scholar] [CrossRef]
- Sekino, K.; Midonoya, M.; Udono, H.; Yamada, Y. Preparation of Schottky contacts on n-type Mg2Si single crystalline substrate. Phys. Proc. 2011, 11, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Xie, J.; Lv, B.; Xiao, Q.; Xie, Q. X-ray photoelectron spectroscopy characterization of band offsets of MgO/Mg2Si and SiO2/Mg2Si heterojunctions. Surf. Interface Anal. 2021, 53, 852–859. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, J.; Lv, B.; Xiao, Q.; Xie, Q. The Degradation Mechanism of Mg2Si during Exploitation at High Temperature. Phys. Status Solidi 2021, 258, 2100425. [Google Scholar] [CrossRef]
- Alfonsetti, R.; De Simone, G.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Santucci, S. SiOx Surface Stoichiometry by XPS: A Comparison of Various Methods. Surf. Interface Anal. 1994, 22, 89–92. [Google Scholar] [CrossRef]
- Raider, S.I.; Fritsch, R. Silicon Monoxide Thin Films. J. Electrochem. Soc. 1976, 123, 1754–1757. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Lefrant, S. XPS study of SiO thin films and SiO-metal interfaces. J. Phys. Condens. Matter 1989, 1, 5197–5204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, K.; Kawamura, S.; Hashimoto, Y.; Akao, N.; Huang, Z.; Saito, W.; Tasaki, K.; Hayashi, K.; Matsushita, T.; Miyazaki, Y. Effects of Oxygen on Lattice Defects in Single-Crystalline Mg2Si Thermoelectrics. Nanomaterials 2023, 13, 1222. https://doi.org/10.3390/nano13071222
Hayashi K, Kawamura S, Hashimoto Y, Akao N, Huang Z, Saito W, Tasaki K, Hayashi K, Matsushita T, Miyazaki Y. Effects of Oxygen on Lattice Defects in Single-Crystalline Mg2Si Thermoelectrics. Nanomaterials. 2023; 13(7):1222. https://doi.org/10.3390/nano13071222
Chicago/Turabian StyleHayashi, Kei, Sota Kawamura, Yusuke Hashimoto, Noboru Akao, Zhicheng Huang, Wataru Saito, Kaichi Tasaki, Koichi Hayashi, Tomohiro Matsushita, and Yuzuru Miyazaki. 2023. "Effects of Oxygen on Lattice Defects in Single-Crystalline Mg2Si Thermoelectrics" Nanomaterials 13, no. 7: 1222. https://doi.org/10.3390/nano13071222
APA StyleHayashi, K., Kawamura, S., Hashimoto, Y., Akao, N., Huang, Z., Saito, W., Tasaki, K., Hayashi, K., Matsushita, T., & Miyazaki, Y. (2023). Effects of Oxygen on Lattice Defects in Single-Crystalline Mg2Si Thermoelectrics. Nanomaterials, 13(7), 1222. https://doi.org/10.3390/nano13071222