Formulation, Optimization and Evaluation of Cytarabine-Loaded Iron Oxide Nanoparticles: From In Vitro to In Vivo Evaluation of Anticancer Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation Methodology
2.2.1. Synthesis of Trehalose Coated Iron Oxide Nanoparticles (TINPs)
2.2.2. Formulation of Cytarabine Loaded TINPs (CY-TINPs)
2.2.3. Drug Content Analysis by HPLC
2.3. Physicochemical Characterization
2.3.1. FT-IR Analysis
2.3.2. Differential Scanning Calorimetry
2.3.3. Powder X-ray Diffractometry (PXRD)
2.3.4. Particle Size and Zeta Potential Analysis
2.3.5. Transmission Emission Microscopy Analysis
2.3.6. Drug Loading (DL) and Entrapment Efficiency (EE)
2.3.7. In Vitro Drug Release
2.3.8. Cell Viability Assay CY-TINPs Formulation
2.3.9. Anticancer Activity
2.4. Experimental Animal Studies
2.4.1. In Vivo Pharmacokinetic Studies
2.4.2. Determination of Cytarabine in Rat Plasma
2.4.3. Statistical Investigation
3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. Spectroscopic Studies Using IR
3.1.2. Spectroscopic Studies Using DSC
3.1.3. Spectroscopic Studies Using XRD
3.1.4. Particle Size and Zeta Potential
3.1.5. Morphology of CY-TINPs Using TEM
3.1.6. Entrapment Efficiency (EE) and Drug Loading (DL) Parameter
3.1.7. In Vitro Dissolution Studies
3.1.8. Cell Viability Assay
3.1.9. Anticancer Activity
4. In Vivo Studies of CY-TINPs Formulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
INPs | Iron oxide nanoparticles |
TINPs | Trehalose-coated stabilized iron oxide nanoparticles |
CY-TINPs | Cytarabine-loaded trehalose-coated stabilized iron oxide nanoparticles |
DSC | Differential scanning calorimetry, |
XRD | X-ray powder diffraction |
TEM | Transmission electron microscope |
ROS | Reactive oxygen species |
PEG-b-AGE | Polyethylene glycol-block-allyl anhydride ether |
PEG | Polyethylene glycol |
PCS | Photon correlation spectroscopy |
PDI | Polydispersity index |
TEM | Transmission electron microscopy |
DL | Drug loading |
EE | Entrapment efficiency |
FBS | Fetal bovine serum |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
DMSO | Dimethyl sulfoxide |
CPCSEA | Committee for the Purpose of Control and Supervision of Experiments on Animals |
FTIR | Fourier transform infrared |
References
- Han, H.J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol. 2019, 52, 1051–1060. [Google Scholar] [CrossRef]
- Kaleem, M.; Dalhat, M.H.; Azmi, L.; Asar, T.O.; Ahmad, W.; Alghanmi, M.; Almostadi, A.; Zughaibi, T.A.; Tabrez, S. An Insight into Molecular Targets of Breast Cancer Brain Metastasis. Int. J. Mol. Sci. 2022, 32, 11687. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz. Int. J. Stud. Res. 2017, 10, hzx009. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.; Mathieu, V.; Pillard, C.; Massip, S.; Marchivie, M.; Jarry, C.; Bernard, P.; Kiss, R.; Guillaumet, G. New imidazo [1,2-b]pyrazoles as anticancer agents: Synthesis, biological evaluation and structure activity relationship analysis. Eur. J. Med. Chem. 2014, 84, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Merino, Á.; Labrador, J.; Zubiaur, P.; Alcaraz, R.; Herrero, M.J.; Montesinos, P.; Abad-Santos, F.; Saiz-Rodríguez, M. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics 2022, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, B.; Kulkarni, S.; Nacev, A.; Muro, S.; Stepanov, P.; Weinberg, I.N. Open challenges in magnetic drug targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Shen, Z.; Yu, L.; Wei, M.; Li, Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 2211. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyaya, R.; Goswami, B. Oxidative damage to DNA constituents by iron-mediated Fenton reactions: The deoxyadenosine family. J. Biomol. Struct. Dyn. 2012, 30, 394–406. [Google Scholar] [CrossRef]
- Peto, M.V. Aluminium and iron in humans: Bioaccumulation, pathology, and removal. Rejuvenation Res. 2010, 13, 5. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, C.; Mackey, M.; Diaz, A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009, 14, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Gorman, A.; Hori, O.; Samali, A. Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. 2010, 2010, 214074. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.M.; Martin, D.; Alvarez, V.; Gonzalez, J.S. Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 543, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Li, Y.; MacDonald, T.; Wu, H.; Provenzale, J.; Peng, X.; Huang, J.; Wang, L.; Wang, A.Y.; Yang, J.; et al. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloids Surf. B Biointerfaces 2017, 150, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Zhang, B.; Wang, L.; Wang, J.; Li, X.; Yang, G.; Gao, F. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Appl. Surf. Sci. 2015, 326, 32–38. [Google Scholar] [CrossRef]
- Panda, J.; Satapathy, B.; Majumder, S.; Sarkar, R.; Mukherjee, B.; Tudu, B. Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J. Magn. Magn. Mater. 2019, 485, 165–173. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, J.; Bajpai, A.; Mongre, R.; Lee, M.S. Encapsulation of cytarabine into casein coated iron oxide nanoparticles (CCIONPs) and study of in vitro drug release and anticancer activities. J. Drug Deliv. Sci. Technol. 2020, 55, 101396. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Z.; Huang, J. Preparation and Analysis of Fe3O4 Magnetic Nanoparticles Used as Targeted-drug Carriers. Chin. J. Chem. Eng. 2008, 16, 451–455. [Google Scholar] [CrossRef]
- Michel, R.; Gradzielski, M. Experimental Aspects of Colloidal Interactions in Mixed systems of liposome and inorganic nanoparticle and their applications. Int. J. Mol. Sci. 2012, 13, 11610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, A.; Loura, S.; Chaudhary, M. A stability indicating RP-HPLC method for determination of anticancer agents cytarabine in lyophilized dosage form. Eurasian J. Anal. Chem. 2012, 7, 160–167. [Google Scholar]
- Fule, R.; Dhamecha, D.; Maniruzzaman, M.; Khale, A.; Amin, P. Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): Evaluating amorphous state and in vivo performance. Int. J. Pharm. 2015, 496, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Fule, R.; Paithankar, V.; Amin, P. Hot melt extrusion based solid solution approach: Exploring polymer comparison, physicochemical characterization and in-vivo evaluation. Int. J. Pharm. 2016, 499, 280–294. [Google Scholar] [CrossRef]
- Hossain, A.; Nandi, U.; Fule, R.; Nokhodchi, A.; Maniruzzaman, M. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets. J. Colloid Interface Sci. 2017, 492, 157–166. [Google Scholar] [CrossRef]
- Pawar, J.N.; Fule, R.; Maniruzzaman, M.; Amin, P.D. Solid crystal suspension of Efavirenz using hot melt extrusion: Exploring the role of crystalline polyols in improving solubility and dissolution rate. Mater. Sci. Eng. C 2017, 78, 1023–1034. [Google Scholar] [CrossRef]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef]
- Fule, R.; Amin, P. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation. Asian J. Pharm. Sci. 2014, 9, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Bajpai, J.; Bajpai, A.K. Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs). J. Nanobiotechnol. 2014, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Nair, A.B.; Kaleem, M.; Dalhat, M.H. Thermosensitive Hydrogels Loaded with Resveratrol Nanoemulsion: Formulation Optimization by Central Composite Design and Evaluation in MCF-7 Human Breast Cancer Cell Lines. Gels 2022, 8, 450. [Google Scholar] [CrossRef]
- Alghamdi, R.M.; Hassan, M.A.; Kaleem, M.; Kayali, A.; Halwani, M.A.; Zamzami, M.A.; Choudhry, H.; Alhosin, M. Targeting Itch/p73 pathway by thymoquinone as a novel therapeutic strategy for cancers with p53 mutation. Eur. J. Cell Sci. 2020, 2, 20–26. [Google Scholar] [CrossRef]
- Lim, S.J.; Lee, M.; Kim, C.K. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J. Control. Release 2004, 100, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tsukagoshi, S.; Sakurai, Y. Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L 1210. Gann Jpn. J. Cancer Res. 1975, 66, 719–720. [Google Scholar]
- Singh, N.; Jenkins, G.; Asadi, R.; Doak, S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojica Pisciotti, M.L.; Lima, E., Jr.; Vasquez Mansilla, M.; Tognoli, V.E.; Troiani, H.E.; Pasa, A.A.; Creczynski-Pasa, T.B.; Silva, A.H.; Gurman, P.; Colombo, L.; et al. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: Magnetic targeting. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2014, 102, 860–868. [Google Scholar] [CrossRef]
- Borysov, A.; Krisanova, N.; Chunihin, O.; Ostapchenko, L.; Pozdnyakova, N.; Borisova, T. A comparative study of neurotoxic potential of synthesized polysaccharidecoated and native ferritinbased magnetic nanoparticles. Croat. Med. J. 2014, 55, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Xiaoliang, W.; Xuman, W.; Hong, X.; Hongchen, G. Acute toxicity and irritation of water-based dextran-coated magnetic fluid injected in mice. J. Biomed. Mater. Res.-Part A 2008, 85, 582–587. [Google Scholar] [CrossRef]
- Berry, C.C.; Wells, S.; Charles, S.; Curtis, A.S.G. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551–4557. [Google Scholar] [CrossRef]
- Syama, S.; Reshma, S.C.; Leji, B.; Anju, M.; Sreekanth, P.J.; Varma, H.K.; Mohanan, P.V. Toxicity Evaluation of Dextran Coated Ferrite Nanomaterials After Acute Oral Exposure to Wistar Rats. J. Allergy Ther. 2014, 5, 2. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Kiliç, G.; Costa, C.; Fernández-Bertólez, N.; Pásaro, E.; Teixeira, J.P.; Laffon, B. Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ. Mol. Mutagen. 2015, 56, 125–148. [Google Scholar] [CrossRef]
- Pereira, C.; Pereira, A.M.; Fernandes, C.; Rocha, M.; Mendes, R.; Fernández-García, M.P.; Guedes, A.; Tavares, P.B.; Grenèche, J.M.; Araújo, J.P.; et al. Superparamagnetic MFe 2O 4 (M = Fe, Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 2012, 24, 1496–1504. [Google Scholar] [CrossRef]
- Mongre, R.K.; Sodhi, S.S.; Ghosh, M.; Kim, J.H.; Kim, N.; Sharma, N.; Jeong, D.K. A New Paradigm to Mitigate Osteosarcoma by Regulation of MicroRNAs and Suppression of the NF-κB Signaling Cascade. Dev. Reprod. 2014, 18, 197. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Mongre, R.; Kumari, S.; Jeong, D.; Tiwari, M. Synthesis, in vitro and in vivo anticancer activity of novel 1-(4-imino-1-substituted-1H-pyrazolo [3,4-d]pyrimidin-5(4H)-yl)urea derivatives. RSC Adv. 2016, 6, 24491–24500. [Google Scholar] [CrossRef]
- Duan, Y.C.; Zheng, Y.C.; Li, X.C.; Wang, M.M.; Ye, X.W.; Guan, Y.Y.; Liu, G.Z.; Zheng, J.X.; Liu, H.M. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole-dithiocarbamate-urea hybrids. Eur. J. Med. Chem. 2013, 64, 99–110. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–345. [Google Scholar] [CrossRef]
- Bounous, D.I.; Campagnoli, R.; Brown, J. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Dis. 1992, 36, 1022–1027. [Google Scholar] [CrossRef]
- Richmond, H.G. Induction of sarcoma in the rat by iron-dextran complex. Br. Med. J. 1959, 1, 947. [Google Scholar] [CrossRef]
- Nguyen, K.; Nuß, B.; Mühlberger, M.; Unterweger, H.; Friedrich, R.P.; Alexiou, C.; Janko, C. Superparamagnetic iron oxide nanoparticles carrying chemotherapeutics improve drug efficacy in monolayer and spheroid cell culture by enabling active accumulation. Nanomaterials 2020, 10, 1577. [Google Scholar] [CrossRef]
Parameters | Results |
---|---|
Particle size | 53.6 ± 1.65 |
Zeta potential | −13.03 |
Surface morphology by TEM | 50 nm, uniform spherical shape |
Entrapment efficiency | 96.6 ± 1.74 |
Loading efficiency | 28.35 ± 1.52 |
In vitro release profile | Sustained upto 72 h. |
Cell viability studies | Nontoxic to Human cells |
Anticancer activity | Improved cytotoxic potential in CY-TINPs than pure drug |
Stability at 4–8 °C and room temperature | Stable at both temperature conditions |
Parameters | Cytarabine Drug | CY-TINPs Formulation |
---|---|---|
Cmax (ng/mL) | 38.54 ±1.03 | 425.26 ± 2.11 |
Tmax (h) | 2.15 ± 1.15 | 2.55 ± 1.18 |
AUC0–72 (µg h/mL) | 174.23 ± 58.18 | 11,546.64 ± 139.82 |
t1/2 (h) | 1.0 ± 1.24 | 3.25 ± 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fule, R.; Kaleem, M.; Asar, T.O.; Rashid, M.A.; Shaik, R.A.; Eid, B.G.; Nasrullah, M.Z.; Ahmad, A.; Kazmi, I. Formulation, Optimization and Evaluation of Cytarabine-Loaded Iron Oxide Nanoparticles: From In Vitro to In Vivo Evaluation of Anticancer Activity. Nanomaterials 2023, 13, 175. https://doi.org/10.3390/nano13010175
Fule R, Kaleem M, Asar TO, Rashid MA, Shaik RA, Eid BG, Nasrullah MZ, Ahmad A, Kazmi I. Formulation, Optimization and Evaluation of Cytarabine-Loaded Iron Oxide Nanoparticles: From In Vitro to In Vivo Evaluation of Anticancer Activity. Nanomaterials. 2023; 13(1):175. https://doi.org/10.3390/nano13010175
Chicago/Turabian StyleFule, Ritesh, Mohammed Kaleem, Turky Omar Asar, Md Abdur Rashid, Rasheed A. Shaik, Basma G. Eid, Mohammed Z. Nasrullah, Aftab Ahmad, and Imran Kazmi. 2023. "Formulation, Optimization and Evaluation of Cytarabine-Loaded Iron Oxide Nanoparticles: From In Vitro to In Vivo Evaluation of Anticancer Activity" Nanomaterials 13, no. 1: 175. https://doi.org/10.3390/nano13010175
APA StyleFule, R., Kaleem, M., Asar, T. O., Rashid, M. A., Shaik, R. A., Eid, B. G., Nasrullah, M. Z., Ahmad, A., & Kazmi, I. (2023). Formulation, Optimization and Evaluation of Cytarabine-Loaded Iron Oxide Nanoparticles: From In Vitro to In Vivo Evaluation of Anticancer Activity. Nanomaterials, 13(1), 175. https://doi.org/10.3390/nano13010175