Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pretreatment of Glass Beads for the Template Immobilization
2.3. Immobilization of Monoamine Template on Glass Beads
2.4. Synthesis of fMIP-NP for 5-HT
2.5. Synthesis of fMIP-NP for Dopamine
2.6. Graft Copolymerization of METMAC as a Dummy Template of Acetylcholine
2.7. Preparation of the fMIP-NP for Acetylcholine
2.8. Evaluation of the Sensitivity and Selectivity of the fMIP-NP
3. Results
3.1. Sensitivity of fMIP-NP of 5-HT
3.2. Sensitivity of fMIP-NP of Dopamine
3.3. Sensitivity of fMIP-NP of Acetylcholine
3.4. Speculation about the Mechanism of Sensing
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegelbaum, S.A.; Südhof, T.C.; Tsien, R.W. Transmitter release. In Principles Neural Science, 6th ed.; Kandel, E., Koester, J.D., Mack, S.H., Siegelbaum, S.A., Eds.; McGraw Hill: New York, NY, USA, 2022; Chapter 15; pp. 324–357. [Google Scholar]
- Kissinger, P.T.; Hart, J.B.; Adams, R.N. Voltammetry in brain tissue—A new neurophysiological measurement. Brain Res. 1973, 55, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.N. In vivo electrochemical measurements in the CNS. Prog. Neurobiol. 1990, 35, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Rodeberg, N.T.; Sandberg, S.G.; Johnson, J.A.; Phillips, P.E.; Wightman, R.M. Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chem. Neurosci. 2017, 8, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardier, A.M. Antidepressant activity: Contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions. Front. Pharmacol. 2013, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- van Heesch, F.; Prins, J.; Konsman, J.P.; Korte-Bouws, G.A.; Westphal, K.G.; Rybka, J.; Olivier, B.; Kraneveld, A.D.; Korte, S.M. Lipopolysaccharide increases degradation of central monoamines: An in vivo microdialysis study in the nucleus accumbens and medial prefrontal cortex of mice. Eur. J. Pharmacol. 2014, 725, 55–63. [Google Scholar] [CrossRef]
- Cudjoe, E.; Bojko, B.; de Lannoy, I.; Saldivia, V.; Pawliszyn, J. Solid-phase microextraction: A complementary in vivo sampling method to microdialysis. Angew. Chem. Int. Ed. Engl. 2013, 52, 12124–12126. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, C.; Smagin, G. Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis. J. Pharm. Biomed. Anal. 2014, 100, 357–364. [Google Scholar] [CrossRef]
- Hou, M.L.; Lin, C.H.; Lin, L.C.; Tsai, T.H. The Drug-Drug Effects of Rhein on the Pharmacokinetics and Pharmacodynamics of Clozapine in Rat Brain Extracellular Fluid by In Vivo Microdialysis. J. Pharmacol. Exp. Ther. 2015, 355, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Konig, M.; Thinnes, A.; Klein, J. Microdialysis and its use in behavioural studies: Focus on acetylcholine. J. Neurosci. Methods 2018, 300, 206–215. [Google Scholar] [CrossRef]
- Zestos, A.G.; Luna-Munguia, H.; Stacey, W.C.; Kennedy, R.T. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem. Neurosci. 2019, 10, 1875–1883. [Google Scholar] [CrossRef]
- Chen, Y.; Pu, Q.; Yu, F.; Ding, X.; Sun, Y.; Guo, Q.; Shi, J.; Zhang, J.; Abliz, Z. Comprehensive quantitative method for neurotransmitters to study the activity of a sedative-hypnotic candidate using microdialysis and LCxLC-MS/MS. Talanta 2022, 245, 123418. [Google Scholar] [CrossRef] [PubMed]
- Okubo, Y.; Sekiya, H.; Namiki, S.; Sakamoto, H.; Iinuma, S.; Yamasaki, M.; Watanabe, M.; Hirose, K.; Iino, M. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl. Acad. Sci. USA 2010, 107, 6526–6531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patriarchi, T.; Cho, J.R.; Merten, K.; Howe, M.W.; Marley, A.; Xiong, W.-H.; Folk, R.W.; Broussard, G.J.; Liang, R.; Jang, M.J. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 2018, 360, eaat4422. [Google Scholar] [CrossRef] [Green Version]
- Corre, J.; van Zessen, R.; Loureiro, M.; Patriarchi, T.; Tian, L.; Pascoli, V.; Luscher, C. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 2018, 7, e39945. [Google Scholar] [CrossRef] [PubMed]
- Augustine, V.; Ebisu, H.; Zhao, Y.; Lee, S.; Ho, B.; Mizuno, G.O.; Tian, L.; Oka, Y. Temporally and Spatially Distinct Thirst Satiation Signals. Neuron 2019, 103, 242–249.e4. [Google Scholar] [CrossRef] [Green Version]
- Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature 2019, 570, 65–70. [Google Scholar] [CrossRef]
- Jing, M.; Li, Y.; Zeng, J.; Huang, P.; Skirzewski, M.; Kljakic, O.; Peng, W.; Qian, T.; Tan, K.; Zou, J.; et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 2020, 17, 1139–1146. [Google Scholar] [CrossRef]
- Patriarchi, T.; Mohebi, A.; Sun, J.; Marley, A.; Liang, R.; Dong, C.; Puhger, K.; Mizuno, G.O.; Davis, C.M.; Wiltgen, B.; et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 2020, 17, 1147–1155. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Zhuo, Y.; Zhang, Y.; Wang, Y.; Qian, C.; et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 2020, 17, 1156–1166. [Google Scholar] [CrossRef]
- Labouesse, M.A.; Cola, R.B.; Patriarchi, T. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int. J. Mol. Sci. 2020, 21, 8048. [Google Scholar] [CrossRef]
- Shea, K.; Yan, M.; Roberts, M.J. Molecularly Imprinted Materials-Sensors and Other Devices; Material Research Society: Warrendale, PA, USA, 2002. [Google Scholar]
- Yoshimi, Y.; Oino, D.; Ohira, H.; Muguruma, H.; Moczko, E.; Piletsky, S.A. Size of Heparin-Imprinted Nanoparticles Reflects the Matched Interactions with the Target Molecule. Sensors 2019, 19, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.F.; Piletsky, S.A. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template-“Plastic Antibodies”. Adv. Funct. Mater. 2013, 23, 2821–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.-H.; Liu, J.; Guo, J.-C.; Yan, X.-L.; Wang, D.-H.; Chen, L.; Yan, F.-Y.; Chen, L.-G. Preparation of polystyrene fluorescent microspheres based on some fluorescent labels. J. Mater. Chem. 2009, 19, 2018–2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Xiao, G.; Song, Y.; Gao, F.; Wang, M.; Zhao, H.; Xing, G.; Cai, X. High frequency stimulation of subthalamic nucleus synchronously modulates primary motor cortex and caudate putamen based on dopamine concentration and electrophysiology activities using microelectrode arrays in Parkinson’s disease rats. Sens. Actuators B Chem. 2019, 301, 127126. [Google Scholar] [CrossRef]
- Yamada, H.; Otsuka, M.; Fujimoto, K.; Kawashima, K.; Yoshida, M. Determination of acetylcholine concentration in cerebrospinal fluid of patients with neurologic diseases. Acta Neurol. Scand. 1996, 93, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Togashi, H.; Matsumoto, M.; Yoshioka, M.; Hirokami, M.; Tochihara, M.; Saito, H. Acetylcholine Measurement of Cerebrospinal Fluid by In Vivo Microdialysis in Freely Moving Rats. Jpn. J. Pharmacol. 1994, 66, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Nirogi, R.; Mudigonda, K.; Kandikere, V.; Ponnamaneni, R. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry. Biomed. Chromatogr. 2010, 24, 39–48. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 69–70. [Google Scholar]
- Wang, F.; Planalp, R.P.; Seitz, W.R. A Cu (II) Indicator Platform Based on Cu (II) Induced Swelling that Changes the Extent of Fluorescein Self-Quenching. Polymers 2019, 11, 1935. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, S.; Beyazit, S.; Haupt, K.; Bui, B.T.S. Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem. Commun. 2013, 49, 6746–6748. [Google Scholar] [CrossRef]
- Xu, J.J.; Medina-Rangel, P.X.; Haupt, K.; Bui, B.T.S. Guide to the Preparation of Molecularly Imprinted Polymer Nanoparticles for Protein Recognition by Solid-Phase Synthesis. Methods Enzymol. 2017, 590, 115–141. [Google Scholar] [CrossRef]
- Poma, A.; Guerreiro, A.; Caygill, S.; Moczko, E.; Piletsky, S. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv. 2014, 4, 4203–4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowen, T.; Stefanucci, E.; Piletska, E.; Marrazza, G.; Canfarotta, F.; Piletsky, S.A. Synthetic Mechanism of Molecular Imprinting at the Solid Phase. Macromolecules 2020, 53, 1435–1442. [Google Scholar] [CrossRef]
- Cavalera, S.; Chiarello, M.; Di Nardo, F.; Anfossi, L.; Baggiani, C. Effect of experimental conditions on the binding abilities of ciprofloxacin-imprinted nanoparticles prepared by solid-phase synthesis. React. Funct. Polym. 2021, 163, 104893. [Google Scholar] [CrossRef]
- Mazzotta, E.; Turco, A.; Chianella, I.; Guerreiro, A.; Piletsky, S.A.; Malitesta, C. Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens. Actuators B Chem. 2016, 229, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Muhammad, T.; Yakup, B.; Piletsky, S.A. New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles. Appl. Surf. Sci. 2017, 406, 115–121. [Google Scholar] [CrossRef]
- Loew, L. Design and Use of Organic Voltage Sensitive Dyes. In Membrane Potential Imaging in the Nervous System; Canepari, M., Zecevic, D., Eds.; Springer: New York, NY, USA, 2011; pp. 13–23. [Google Scholar]
Molar Ratio of Anchors | Relative Change [%] in Fluorescence Intensity by | Sensitivity Ratio [-] | |
---|---|---|---|
15 μM Dopamine | 15 μM DOPA | ||
APTMS: AEATMS = 5:5 | 3.6 | 1.5 | 2.4 |
APTMS: PTMS = | |||
5:5 | 8.7 | 2.8 | 3.1 |
3:7 | 7.3 | 0.1 | 73 |
1:9 | 4.2 | 0.1 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimi, Y.; Katsumata, Y.; Osawa, N.; Ogishita, N.; Kadoya, R. Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density. Nanomaterials 2023, 13, 212. https://doi.org/10.3390/nano13010212
Yoshimi Y, Katsumata Y, Osawa N, Ogishita N, Kadoya R. Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density. Nanomaterials. 2023; 13(1):212. https://doi.org/10.3390/nano13010212
Chicago/Turabian StyleYoshimi, Yasuo, Yuto Katsumata, Naoya Osawa, Neo Ogishita, and Ryota Kadoya. 2023. "Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density" Nanomaterials 13, no. 1: 212. https://doi.org/10.3390/nano13010212
APA StyleYoshimi, Y., Katsumata, Y., Osawa, N., Ogishita, N., & Kadoya, R. (2023). Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density. Nanomaterials, 13(1), 212. https://doi.org/10.3390/nano13010212