A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials
Abstract
:1. Introduction
2. Brief Outlook of Chemistry of Siloxanes
3. Siloxanes as Support for Molecularly Imprinted Polymers
4. Siloxane-Based Molecular Imprinting for Catalysis
5. Molecularly Imprinted Siloxane Layers
6. Comparison of MIPs Based on Siloxanes and Organic Polymers
7. Outlook and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Haupt, K.; Medina Rangel, P.X.; Tse Sum Bui, B. Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-the-art and future perspective. Materials 2021, 14, 1850. [Google Scholar] [CrossRef]
- Reville, E.K.; Sylvester, E.H.; Benware, S.J.; Negi, S.S.; Berda, B.E. Customizble molecular recognition: Advancements in design, synthesis, and application to molecularly imprinted polymers. Polym. Chem. 2022, 13, 3387–3411. [Google Scholar] [CrossRef]
- Parisi, O.I.; Francomano, F.; Dattilo, M.; Patitucci, F.; Prete, S.; Amone, F.; Puoci, F. The evolution of molecular recognition: From anitibodies to molecularly imprinted polymers (MIPs) as artificial counterpart. J. Funct. Biomater. 2022, 13, 12. [Google Scholar] [CrossRef]
- Garnier, M.; Sabbah, M.; Menager, C.; Griffete, N. Hyrid molecularly imprinted polymers: The future of nanomedicine? Nanomaterials 2021, 11, 3091. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A. Use of polymers with enzyme-analogues structures for resolution of racemates. Angew. Chem. Int. Ed. 1972, 11, 341–344. [Google Scholar]
- Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett. 1973, 14, 4329–4332. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A.; Vesper, W.; Grobe-Einsler, R. Studies on synthesis of polymers with enzyme analog structure. Chem. Ztg. 1976, 100, 288. [Google Scholar]
- Wulff, G.; Vesper, R.; Grobe-Einsler, R.; Sarhan, A. Enzyme-analogue built polymers, on the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol. Chem. 1977, 178, 2799–2816. [Google Scholar] [CrossRef]
- Wulff, G.; Grobe-Einsler, R.; Vesper, R.; Sarhan, A. Enzyme-analogue built polymers, on the specificity distribution of chiral cavities prepared in synthetic polymers. Makromol. Chem. 1977, 178, 2817–2825. [Google Scholar] [CrossRef]
- Wulff, G.; Schulze, I. Enzyme-analogous polymers. Directed cooperativity and site separation of mercapto groups in synthetic polymers. Angew. Chem. Int. Ed. 1978, 17, 537–538. [Google Scholar] [CrossRef]
- Wulff, G.; Akelah, A. Enzyme-analogue built polymers, synthesis of 5-vinylsalicaldehyde and a simplified synthesis of some divinyl derivatives. Makromol. Chem. 1978, 179, 2647–2651. [Google Scholar] [CrossRef]
- Archady, R.; Mosbach, K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol. Chem. 1981, 182, 687–692. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 1995, 117, 7105–7111. [Google Scholar] [CrossRef]
- Polyakov, M.V. Adsorption properties and structure of silica gel. Zhur. Fiz. Khim. 1931, 2, 799–805. [Google Scholar]
- Pauling, L. Tailor-made compounds predicted by Pauling. Chem. Eng. News 1949, 27, 913. [Google Scholar]
- Dickney, H.F. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Dickney, H.F. Specific adsorption. J. Phys. Chem. 1955, 59, 695–707. [Google Scholar] [CrossRef]
- Polyakov, M.V.; Kuleshina, L.; Neimark, I. On the dependence of silica gel adsorption properties on the character of its porosity. Zhur. Fiz. Khim. 1937, 10, 100–112. [Google Scholar]
- Vysotskii, Z.; Polyakov, M.V. The preparation of specific adsorbents. Zhur. Fiz. Khim. 1956, 30, 1901–1902. [Google Scholar]
- Vysotskii, Z.; Polyakov, M.V. Structural changes of the pores of silica gel induced by vapours of template compounds. Dokl. Akad. Nauk SSSR 1959, 129, 831–834. [Google Scholar]
- Waksmundzki, A.; Wawrzynowicz, T.; Wolski, T. Adsorption properties of silica-gels precipitated in the presence of some alkaloids. Ann. Univ. Mariae Curie-Skłodowska (Lub.-Pol.) 1962, 17, 27–38. (In Polish) [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Nasuto, R.; Rożyło, J. Adsorption properties of silica gels obtained in the presence of some amines. Ann. Univesitatis Mariae Curie-Skłodowska (Lub.-Pol.) 1968, 23, 23–29. (In Polish) [Google Scholar]
- Waksmundzki, A.; Wawrzynowicz, T.; Szumiło, H. Adsorption of some phenols on silica-gels prepared in their presence. Ann. Univ. Mariae Curie-Skłodowska (Lub.-Pol.) 1963, 18, 107–116. (In Polish) [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Różyło, J.; Nasuto, R. Heat of wetting and heat of adsorption from solutions on specific adsorbents. Folia Soc. Sci. Lub. 1962, 2, 145–148. [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Nasuto, R.; Różyło, J.; Matusewicz, J. Structure and adsorption properties of specific adsorbents. Folia Soc. Sci. Lub. 1962, 2, 149–154. [Google Scholar]
- Waksmundzki, A. Preparatyka silika-żelu specyficzne adsorbującego niektóre heterocykliczne zasady organiczne. Rocz. Chem. 1958, 32, 323–327. [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Różyło, J.; Nasuto, J.R. Efekty energetyczne adsorpcji pirydyny na żelach krzemionkowych uaktywnionych na niektóre zasady heterocykliczne. Przemysł Chem. 1960, 40, 565–567. [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Matusewicz, J.; Nasuto, R.; Różyło, J. Struktura żeli krzemionkowych specyficznie adsorbujących pirydynę, chinolinę i akrydynę. Przemysł Chem. 1961, 40, 387–390. [Google Scholar]
- Waksmundzki, A.; Ościk, J.; Nasuto, R.; Różyło, J. O żelach krzemionkowych wykazujących własności specyficznej adsorpcji. Przemysł Chem. 1963, 42, 193–199. [Google Scholar]
- Cameron, A.; Andersson, H.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar]
- Gutierrez-Climente, R.; Clavie, M.; Dumy, P.; Mehdi, A.; Subra, G. Sol-gel process: The inorganic approach in protein imprinting. J. Mater. Chem. B 2021, 9, 2155–2178. [Google Scholar] [CrossRef] [PubMed]
- Kose, K.; Kehribar, D.Y.; Uzun, L. Molecularly imprinted polymers in toxicology: A literature survey for the last 5 years. Environ. Sci. Pollut. Res. 2021, 28, 35437–35471. [Google Scholar] [CrossRef]
- Daryanavard, S.M.; Zolfaghari, H.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed. Chromatogr. 2021, 35, e5105. [Google Scholar] [CrossRef] [PubMed]
- Pasquardini, L.; Bossi, A.M. Molecularly imprinted polymers by epitope imprinting: A journey from molecular interactions to the available bioinformatics resources to scout for epitope templates. Anal. Bioanal. Chem. 2021, 413, 6101–6115. [Google Scholar] [CrossRef]
- Tian, R.; Li, Y.; Xu, J.; Hou, C.; Luo, Q.; Liu, J. Recent development in the design of artificial enzymes through molecular imprinting technology. J. Mater. Chem. B 2022, 10, 6590–6606. [Google Scholar] [CrossRef]
- Mustafa, Y.L.; Keirouz, A.; Leese, H.S. Molecularly imprinted polymers in diagnostics: Accessing anaytes in biofluids. J. Mater. Chem. B 2022, 10, 7418–7449. [Google Scholar] [CrossRef]
- Gui, R.; Guo, H.; Jin, H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. Nanoscale Adv. 2019, 1, 3325–3363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Y.; Wang, R.; Zhang, P.; Zhang, Y.; Randell, E.; Zhang, M.; Ji, Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal. Chim. Acta 2022, 1234, 340319. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Bozal-Palabiyik, B.; Unal, D.N.; Erkmen, C.; Siddiq, M.; Shah, A.; Uslu, B. Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for enviromental pollutants. Trend Environ. Anal. Chem. 2022, 36, e00176. [Google Scholar] [CrossRef]
- Karadurmus, L.; Bilge, S.; Sinag, A.; Ozkan, S.A. Molecularly imprinted polymer (MIP)-based sensing for detection of explosives: Current perspectives and future applications. Trends Anal. Chem. 2022, 155, 116694. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review). J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef] [PubMed]
- Shahhoseini, F.; Azizi, A.; Bottaro, C.S. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microetraction devices. Trends Anal. Chem. 2022, 156, 116695. [Google Scholar] [CrossRef]
- Poonia, K.; Raizada, P.; Singh, A.; Verma, N.; Ahamad, T.; Alshehri, S.M.; Khan, A.A.P.; Singh, P.; Hussain, C.M. Magnetic molecularly imprinted polymer photocatalysts: Synthesis, applications and future perspective. J. Ind. Eng. Chem. 2022, 113, 1–14. [Google Scholar] [CrossRef]
- Basek, S.; Venkatram, R.; Singhal, R.S. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022, 139, 109074. [Google Scholar] [CrossRef]
- Nawaz, N.; Abu Bakar, N.K.; Muhammad Ekramul Mahmud, H.N.; Jamaludin, N.S. Molecularly imprinted polymers-based DNA biosensors. Anal. Biochem. 2021, 630, 114328. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Review on molecularly imprinted polymers with a focus on their applicaton to the analysis of protein biomarkers. Trends Anal. Chem. 2021, 144, 116431. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Lu, W.; Li, B.; Yang, G.; Bi, Y.; Arabi, M.; Wang, X.; Ma, J.; Chen, L. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. Trends Anal. Chem. 2022, 146, 116504. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Stimuli-responsive molecularly imprinted polymers as adsorbent of analytes in complex matrices. Microchem. J. 2022, 181, 107750. [Google Scholar] [CrossRef]
- Hasseb, A.A.; Abdel-Ghani, N.d.T.; Shehab, O.R.; El Nashar, R.M. Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens. Curr. Opin. Electrochem. 2022, 31, 100848. [Google Scholar] [CrossRef]
- Martin-Esteban, A. Membrane-protected molecularly imprinted polymers: Towards selectivity improvement of liquid-phase microextraction. Trends. Anal. Chem. 2021, 138, 116236. [Google Scholar] [CrossRef]
- Sobiech, M.; Luliński, P.; Wieczorek, P.P.; Marć, M. Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Anal. Chem. 2021, 142, 116306. [Google Scholar] [CrossRef]
- Dar, K.K.; Shao, S.; Tan, T.; Lv, Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol. Adv. 2020, 45, 107640. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Li, T.; Ji, Y.; Li, R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal. Chim. Acta 2021, 1148, 238196. [Google Scholar] [CrossRef]
- Villa, C.C.; Sanchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutierrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar] [CrossRef]
- Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly imprinted polymers for cell recognition. Trends Biotechnol. 2020, 38, 368–387. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, C.; Du, X.; Zhang, Z. Recent advances of nanomaterials-based molecularly imprinted electrochemical sensors. Nanomaterials 2022, 12, 1913. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, C.; Lin, J.; Zhu, Z.; Hu, B.; Wu, L. Towards development of molecularly imprinted electrochemical sensors for food and drug safety: Progress and trends. Biosensors 2022, 12, 369. [Google Scholar] [CrossRef]
- Ariani, M.D.; Zuhrotun, A.; Manesiotis, P.; Hasanah, A.N. Magnetic molecularly imprinted polymers: An update on their use in the separation of active compounds from natural products. Polymers 2022, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Jeon, S.; Jeong, J.; Park, S.Y.; Han, D.W.; Hong, S.W. Recent advances of point-of-care devices integrated with molecularly imprinted polymers-based biosensors: From biomolecule sensing design to intraoral fluid testing. Biosensors 2022, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.G.; Benhawy, A.H.; Khalifa, R.M.; El Nashar, R.M.; Trojanowicz, M. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules 2021, 26, 6515. [Google Scholar] [CrossRef] [PubMed]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: A review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Liu, R.; Poma, A. Advances in molecularly imprinted polymers as drug deliery systems. Molecules 2021, 26, 3589. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, D.; Wang, T.; Jin, Y.; Ling, B.; Li, Q.; Li, J. A simple approach to prepare fluorescent molecularly imprinted nanoparticles. RSC Adv. 2021, 11, 7732–7737. [Google Scholar] [CrossRef] [PubMed]
- Bonatii, A.F.; De Maria, C.; Vozzi, G. Molecular imprinting strategies for tissue engineering applications: A review. Polymers 2021, 13, 548. [Google Scholar] [CrossRef]
- Sanadgol, N.; Wackerlig, J. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review. Pharmaceutics 2020, 12, 831. [Google Scholar] [CrossRef]
- Blanco, I. Polysiloxanes in theranostics and drug delivery: A review. Polymers 2018, 10, 755. [Google Scholar] [CrossRef] [Green Version]
- Mojsiewicz-Pieńkowska, K.; Jamrógiewicz, M.; Szymkowska, K.; Krenczkowska, D. Direct human contact with siloxanes (silicones)—Safety or risk. Part 1. Characteristics of siloxanes (Silicones). Front. Pharmacol. 2016, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Tansel, B.; Surita, S.C. Historical and projected trends of siloxane use in consumer products, associated impacts on municipal solid waste and landfill gas utilization. Int. J. Environ. Sci. Technol. 2017, 14, 795–802. [Google Scholar] [CrossRef]
- Abe, Y.; Gunjo, Y.T. Oligo- and polysiloxanes. Prog. Polym. Sci. 2004, 29, 149–182. [Google Scholar] [CrossRef]
- Sołoducho, J.; Zając, D.; Spychalska, K.; Baluta, S.; Cabaj, J. Conducting silicone-based polymers and their application. Molecules 2021, 26, 2012. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, U.; Lee, H.; Kang, S.-M.; Lee, Y.; Kim, S.; Bae, B.-S. Sol-gel synthesized siloxane hybrid materials for display and optoelectronic applications. J. Solgel Sci. Technol. 2021, 3, 8871–8888. [Google Scholar] [CrossRef]
- Zalewski, K.; Chyłek, Z.; Trzciński, W.A. A review of polysiloxanes in terms of their application in explosives. Polymers 2021, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-A.; Kim, Y.J. Novel silicone laminating materials for improved index matching in automotive display applications. J. Soc. Inf. Display. 2021, 29, 608–619. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, W.; Cheng, W.; Wang, H.; Mao, T. Bioinspired Bola polysiloxane for wettability, breathability, and softness in fabrics. Ind. Eng. Chem. Res. 2022, 61, 7205–7215. [Google Scholar] [CrossRef]
- Carrascosa, L.A.M.; Zarzuela, R.; Botana-Galvin, M.; Botana, F.J.; Mosquera, M.J. Achieving superhydrophobic surfaces with tunables roughness on building materials via nanosecond laser texturing of silane/siloxane coatings. J. Build. Eng. 2022, 58, 104979. [Google Scholar] [CrossRef]
- Poojari, T. Silicones for encapsulation of medical device implants. Silicon 2017, 9, 645–649. [Google Scholar] [CrossRef]
- Palacios-Jordan, H.; Jane-Brunet, A.; Jane-Brunet, E.; Puiggros, F.; Canela, N.; Rodriguez, M.A. Considerations on the analysis of E-900 food additive: An NMR perspective. Foods 2022, 11, 297. [Google Scholar] [CrossRef]
- Moss, G.P.; Smith, P.A.S.; Tavernier, D. Glossary of class names of organic compounds and reactive intermediates based on structure. Pure Appl. Chem. 1995, 67, 1307–1375. [Google Scholar] [CrossRef]
- Rucker, C.; Kummerer, K. Environmental chemistry of organosiloxanes. Chem. Rev. 2014, 115, 466–524. [Google Scholar] [CrossRef] [PubMed]
- Dankert, F.; von Hanisch, C. Siloxane coordination revisited: Si-O bond character, reactivity, and magnificent molecular shapes. Eur. J. Inorg. Chem. 2021, 2021, 2907–2927. [Google Scholar] [CrossRef]
- Weinhold, F.; West, R. The nature of the silicon-oxygen bond. Organometallics 2011, 30, 5815–5824. [Google Scholar] [CrossRef]
- Passmore, J.; Rautiainen, J.M. On the lower Lewis basicity of siloxanes compared to ethers. Eur. J. Inorg. Chem. 2012, 2012, 6002–6010. [Google Scholar] [CrossRef]
- Pauling, L. The nature of silicon-oxygen bonds. Am. Min. 1980, 65, 321–323. [Google Scholar]
- Weinhold, F.; West, R. Hyperconjugative interactions in permethyated siloxanes and ethers: The nature of the Si-O bond. J. Am. Chem. Soc. 2013, 135, 5762–5767. [Google Scholar] [CrossRef]
- Cordero, B.; Gomez, V.; Platero-Prats, A.E.; Reves, M.; Echeverria, J.; Cremades, E.; Barragan, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838. Available online: https://pubs.rsc.org/en/content/articlelanding/2008/dt/b801115j (accessed on 18 December 2022). [CrossRef]
- Moraru, I.-T.; Petrar, P.M.; Nemes, G.G. Bringing a knowledge gap from siloxanes to germoxanes and stannoxanes. A theoretical natural bond orbital study. J. Phys. Chem. A 2017, 121, 2515–2522. [Google Scholar] [CrossRef]
- Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37, 946–953. [Google Scholar] [CrossRef]
- Yang, Z.; Bai, Y.; Meng, L.; Wang, Y.; Pang, A.; Guo, X.; Xiao, J.; Li, W. A review of poly[(3,3,3-trifluoropropyl)methylsiloxane]: Synthesis, properties and applications. Eur. Polym. J. 2022, 163, 110903. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Y.; Xu, T.; Yang, W. Study of sol-gel reaction of organically modified alkoxysilanes. Part I: Investigation of hydrolysis and polycondensation of phenylaminomethyl triethoxysilane and tetraethoxysilane. J. Non-Cryst. Solids 2006, 352, 5642–5651. [Google Scholar] [CrossRef]
- Grzelka, A.; Chojnowski, J.; Cypryk, M.; Fortuniak, W.; Hupfield, P.C.; Taylor, R.G. Polycondensation and disproportionation of an oligosiloxanol in the presence of a superbase. J. Organomet. Chem. 2002, 660, 14–26. [Google Scholar] [CrossRef]
- Cypryk, M.; Apeloig, Y. Mechanism of the acid-catalyzed Si-O ond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 2002, 21, 2165–2175. [Google Scholar] [CrossRef]
- Bento, A.P.; Bickelhaupt, F.M. Nucleophilic substitution at silicon (SN2@Si) via a central reaction barrier. J. Org. Chem. 2007, 72, 2201–2207. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Chen, Y.; Deng, Q.; Wang, S. Dummy molecularly imprinted silica materials for effective removal of aristolochic acid I from kaempfer dutchmanspipe root extract. Microchem. J. 2020, 152, 104463. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Bhogal, S.; Mohiuddin, I.; Kaur, K.; Lee, J.; Brown, R.J.C.; Malik, A.K.; Kim, K.H. Dual-template magnetic molecularly imprinted polymer-based sorbent for simultaneous and selective detection of phenolic endocrine disrupting compounds in foodstuffs. Environ. Pollut. 2021, 275, 116613. [Google Scholar] [CrossRef]
- Zhi, K.; Wang, L.; Zhang, Y.; Jiang, Y.; Zhang, L.; Yasin, A. Influence of size and shape of silica supports on the sol-gel surface molecularly imprinted polymers for selective adsorption of gossypol. Materials 2018, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Jiang, J.; Lee, S.S.; Ying, J.Y. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 2008, 24, 5842–5848. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.; Zheng, S.; Xing, Y.; Huang, C. Novel fluorescent sensor using molecularly imprinted silica microsphere-coated CdSe@CdS quantum dots and its application in the detection of 2,4,6-trichlorophenol from environmental water samples. Luminescence 2019, 34, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tan, L.; Li, Y.; Wu, X.; Liang, Y. Highly ordered molecularly imprinted mesoporous silica for selective removal of bisphenol A from wastewater. J. Sep. Sci. 2020, 43, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, H.; Wu, D.; Zhang, J.; Liu, X.; Gao, S.; Yong, K. Electrochemical chiral recognition of tryptophan isomers based on nonionic surfactants assisted molecular imprinting sol-gel silica. ACS Appl. Mater. Interfaces 2019, 11, 2840–2848. [Google Scholar] [CrossRef]
- Zuo, H.; Shishan, W.S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar]
- Glosz, K.; Stolarczyk, A.; Jarosz, T. Siloxanes-versatile materials for surface functionalisation and graft copolymers. Int. J. Mol. Sci. 2020, 21, 6387. [Google Scholar] [CrossRef] [PubMed]
- Chruściel, J.J.; Leśniak, W. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 2015, 41, 67–121. [Google Scholar] [CrossRef]
- Kuciński, K.; Stacowiak-Dłużyńska, H.; Hreczycho, G. Catalytic silylation of O-nucleophiles via Si-H or Si-C bond cleavage: A route to silyl ethers, silanols and siloxanes. Coord. Chem. Rev. 2022, 459, 214456. [Google Scholar] [CrossRef]
- Kuciński, K.; Hreczycho, G. Catalytic formation of siicon-heteroatom (N, P, O, S) bonds. Chem. Cat. Chem. 2017, 9, 1868–1885. [Google Scholar]
- Soldatov, M.; Liu, H. Hybrid porous polymers based on cage-like organosiloxanes: Synthesis, properties and applications. Prog. Polym. Sci. 2021, 119, 101419. [Google Scholar] [CrossRef]
- Taylor, P.G.; Bassindale, A.R.; El Aziz, Y.; Pourny, M.; Stevenson, R.; Hursthouse, M.B.; Coles, S.J. Further studies of fluoride ion entrapment in octasilsesquioxane cages; X-ray crystal structre studies and factors that affect their formation. Dalton Trans. 2012, 41, 2048–2059. [Google Scholar] [CrossRef]
- Dankert, F.; von Hanisch, C. Insights into the coordination ability of siloxanes employing partially silicon based crown ethers: A comparative analysis of s-block metal complexes. Inorg. Chem. 2019, 58, 3518–3526. [Google Scholar] [CrossRef] [PubMed]
- Reuter, K.; Buchner, M.R.; Thiele, G.; von Hanisch, C. Stable alkali-metal complexes of hybrid disila-crown ethers. Inorg. Chem. 2016, 55, 4441–4447. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, M.D.; Mousavian, P. Strong tetrel bonds: Theoretical aspects and experimental evidence. Molecules 2018, 23, 2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budnicka, M.; Sobiech, M.; Kolmas, J.; Luliński, P. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions—Recent advancements and application to environmental, food and biomedical analysis. Trends Anal. Chem. 2022, 156, 116711. [Google Scholar] [CrossRef]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar] [CrossRef]
- Wan, L.; Chen, Z.; Huang, C.; Shen, X. Core-shell molecularly imprinted particles. Trends. Anal. Chem. 2017, 95, 110–121. [Google Scholar] [CrossRef]
- Fresco-Cala, B.; Batista, A.D.; Cardenas, S. Molecularly imprinted polymer micro- and nano-particles: A review. Molecules 2020, 25, 4740. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.-H. Core-shell structured molecularly imprinted materials for sensing applications. Trends Anal. Chem. 2020, 133, 116043. [Google Scholar] [CrossRef]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core-shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Sobiech, M.; Giebułtowicz, J.; Luliński, P. Application of magnetic core-shell imprinted nanoconjugates for the analysis of hordenine in human plasma-preliminary data on pharmacokinetic study after oral administration. J. Agric. Food Chem. 2020, 68, 14502–14512. [Google Scholar] [CrossRef]
- Anene, A.; Kalfat, R.; Chevalier, Y.; Hbaieb, S. Molecularly imprinted polymer-based materials as thin films on silica supports for efficient adsorption of patulin. Colloid Surf. A: Physicochem. Eng. Asp. 2016, 497, 293–303. [Google Scholar] [CrossRef]
- Luliński, P.; Janczura, M.; Sobiech, M.; Giebułtowicz, J. Magnetic molecularly imprinted nano-conjugates for effective extraction of food components-A model study of tyramine determination in craft beers. Int. J. Mol. Sci. 2021, 22, 9560. [Google Scholar] [CrossRef] [PubMed]
- Meseguer-Lloret, S.; Torres-Cartas, S.; Gomez-Benito, C.; Herrero-Martinez, J.M. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 2022, 239, 123082. [Google Scholar] [CrossRef] [PubMed]
- Song, W.-F.; Zhao, Q.-L.; Zhou, X.-J.; Zhang, L.-S.; Huang, Y.-P.; Liu, Z.-S. A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography. Microchim. Acta 2019, 186, 22. [Google Scholar] [CrossRef]
- Li, Q.; Yang, K.; Liang, Y.; Jiang, B.; Liu, J.; Zhang, L.; Liang, Z.; Zhang, Y. Surface protein imprinted core-shell matrices for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy. Appl. Mater. Interfaces 2014, 6, 21954–21960. [Google Scholar] [CrossRef]
- Gibson, M.I.; Frohlich, E.; Klok, H.-A. Postpolymerization modification of poly(pentafluorophenyl methacrylate): Synthesis of a diverse water-soluble polymer library. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 4332–4345. [Google Scholar] [CrossRef]
- Urquhart, M.C.; Dao, N.V.; Ercole, F.; Boyd, B.J.; Davis, T.P.; Whittaker, M.R.; Quinn, J.F. Polymers with dithiobenzoate end groups constitutively release hydrogen sulfide upon exposure to cysteine and homocysteine. Macro Lett. 2020, 9, 553–557. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, X.; Huang, W.; Luan, Y.; Yang, Y.; Zhu, M.; Yang, W. Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples. Appl. Surf. Sci. 2017, 426, 1075–1083. [Google Scholar] [CrossRef]
- Fu, G.; He, H.; Chai, Z.; Chen, H.; Kong, J.; Wang, Y.; Jiang, Y. Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption. Anal. Chem. 2011, 83, 1431–1436. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Li, J.; Liu, H.; Yan, Z.; Kuang, L. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem. 2019, 287, 100–106. [Google Scholar] [CrossRef]
- Zhao, D.; Jia, J.; Yu, X.; Sun, X. Preparation and characterization of a molecularly imprinted polymer by grafting on silica supports: A selective sorbent for patulin toxin. Anal. Bioanal. Chem. 2011, 401, 2259–2273. [Google Scholar] [CrossRef]
- Sulitzky, C.; Ruckert, B.; Hall, A.J.; Lanza, F.; Unger, K.; Sellergren, B. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules 2002, 35, 79–91. [Google Scholar] [CrossRef]
- Mueller, M.; Bandl, C.; Kern, W. Surface-immobilized photoinitiators for light induced polymerization and coupling reactions. Polymers 2022, 14, 608. [Google Scholar] [CrossRef] [PubMed]
- Kamra, T.; Chaudhary, S.; Xu, C.; Johansson, N.; Montelius, L.; Schnadt, J.; Ye, L. Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J. Colloid Interface Sci. 2015, 445, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piletsky, S.S.; Cruz, A.G.; Piletska, E.; Piletsky, S.A.; Aboagye, E.O.; Spivey, A.C. Iodo silanes as superior substrates for the solid phase synthesis of molecularly imprinted polymer nanoparticles. Polymers 2022, 14, 1595. [Google Scholar] [CrossRef] [PubMed]
- Eduok, U.; Faye, O.; Szpunar, J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Baskaran, K.; Ali, M.; Gingrich, K.; Porter, D.L.; Chong, S.; Riley, B.J.; Peak, C.W.; Naleway, S.E.; Zharov, I.; Carlson, K. Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications. Micropor. Mesopor. Mater. 2022, 336, 111874. [Google Scholar] [CrossRef]
- Purkayastha, A.; Baruah, J.B. Syntetic methodologies in siloxanes. Appl. Organometal. Chem. 2004, 18, 166–175. [Google Scholar] [CrossRef]
- Zhang, L.-P.; Tang, S.-H.; Mo, C.-E.; Wang, C.; Huang, Y.-P.; Liu, Z.-S. Synergistic effect of liquid crystal and polyhedral oligomeric silsesquioxane to prepare molecularly imprinted polymer for paclitaxel delivery. Eur. Polym. J. 2018, 98, 226–236. [Google Scholar] [CrossRef]
- Zhang, L.P.; Wang, X.L.; Pang, Q.Q.; Huang, Y.P.; Tang, L.; Chen, M.; Liu, Z.S. Solvent-responsive floating liquid crystalline-molecularly imprinted polymers for gastroretentive controlled drug release system. Int. J. Pharm. 2017, 532, 365–373. [Google Scholar] [CrossRef]
- Mo, C.-E.; Chai, M.-H.; Zhang, L.-P.; Ran, R.-X.; Huang, Y.-P.; Liu, Z.-S. Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release. Int. J. Pharm. 2019, 557, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Krumpfer, J.W.; McCarthy, T.J. Rediscovering silicones; "Unreactive" silicones react with inorganic surfaces. Langmuir 2011, 27, 11514–11519. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, E.T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundstrom, I. Structure of 3-aminopropyltriethoxy silane on silicon oxide. J. Colloid Interface Sci. 1991, 147, 103–118. [Google Scholar] [CrossRef]
- Moein, M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2021, 224, 121794. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Martin-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. Trends Anal. Chem. 2019, 118, 574–586. [Google Scholar] [CrossRef]
- Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Wieczorek, P.P.; Namieśnik, J.; Marć, M. Application of molecularly imprinted polymers in analytical chiral separations and analysis. Trends Anal. Chem. 2018, 102, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Sarafraz-Yazdi, A.; Razavi, N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Anal. Chem. 2015, 73, 81–90. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Orbay, S.; Kocaturk, O.; Sanyal, R.; Sanyal, A. Molecularly imprinted polymer-coated inorganic nanoparticles: Fabrication and biomedical applications. Micromachines 2022, 13, 1464. [Google Scholar] [CrossRef]
- Jayasinghe, G.D.T.M.; Moreda-Pineiro, A. Molecularly imprinted polymers for dispersive (micro)solid phase extraction: A review. Separations 2021, 8, 99. [Google Scholar] [CrossRef]
- Susanti, I.; Hasanah, A.N. How to develop molecularly imprinted mesoporous silica for selective recognition of analytes in pharmaceutical, enviromental, and food samples. Polym. Adv. Technol. 2021, 32, 1965–1980. [Google Scholar] [CrossRef]
- Lie, K.R.; Samuel, A.O.; Hasanah, A.N. Molecularly imprinted mesoporous silica: Potential of the materials, synthesis and application in the active compound separation from natural product. Chem. Pap. 2022, 76, 2595–2613. [Google Scholar] [CrossRef]
- Zhang, G.; Ali, M.M.; Feng, X.; Zhou, J.; Hu, L. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. Trends Anal. Chem. 2021, 144, 116426. [Google Scholar] [CrossRef]
- An, D.Y.; Pu, W.R.; Wang, Y.; Xue, Z.; Huang, Y.P.; Liu, Z.S. Improving sorption performance of a molecularly imprinted monolithic column by doping mesoporous molecular sieve SBA-15. Microchim. Acta 2022, 189, 85. [Google Scholar] [CrossRef]
- Dehghani, Z.; Akhond, M.; Absalan, G. Carbon quantum dots embedded silica molecularly imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers. Microchem. J. 2021, 160, 105723. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Z.; Xiao, H.; Chen, S.; Fu, J. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of p-nitroaniline. RSC Adv. 2019, 9, 41383–41391. [Google Scholar] [CrossRef] [Green Version]
- Ghani, S.M.; Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Preparation and comparison of molecularly imprinted polymer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response surface method. Microchim. Acta 2020, 187, 294. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wang, Z.; Wang, Y.; Dai, J.; Gao, L.; Wei, M.; Yan, Y.; Li, C. A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO2@rGO@Ag for the detection of alpha-cyhalothrin via SERS. Microchim. Acta 2018, 185, 193. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew. Chem. Int. Ed. 2011, 50, 5913–5917. [Google Scholar] [CrossRef]
- Xu, S.; Ding, J.; Chen, L. A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica-graphitic carbon nitride composite. Anal. Bioanal. Chem. 2018, 410, 7103–7112. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, Z.; Zhang, L.; Zhang, W.; Yang, W. Novel electrochemical sensor based on molecularly imprinted polymers with MWCNTs-SiO2 for selective and sensitive detecting 2,4-D. J. Inorg. Organometal. Polym. Mater. 2022, 32, 572–582. [Google Scholar] [CrossRef]
- Ansari, S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and enviromental analysis: Recent developments and trends. Trends Anal. Chem. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- Forge, D.; Roch, A.; Laurent, S.; Tellez, H.; Gossuin, T.; Renaux, F.; Vander Elst, L.; Muller, R.N. Optimization of the synthesis of superparamagnetic contrast agents by the design of experiments method. J. Phys. Chem. C 2008, 112, 19178–19185. [Google Scholar] [CrossRef]
- Faiyas, A.P.A.; Vinod, E.M.; Joseph, J.; Ganesan, R.; Pandey, R.K. Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its propetries. J. Magn. Magn. Mater. 2010, 322, 400–404. [Google Scholar] [CrossRef]
- Gribanov, N.M.; Bibik, E.E.; Buzunov, O.V.; Naumov, V.N. Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J. Magn. Magn. Mater. 1990, 85, 7–10. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Yaghmaei, S.; Roostaazad, R.; Bardania, H.; Arpanaei, A. Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, strucutral and surface properties of functionalized silica-coated iron oxide nanocomposite particles. Phys. E 2011, 44, 618–627. [Google Scholar] [CrossRef]
- Hang, Q.; Yin, H.; Yuan, Y.; Jiang, Z.; Zhao, L.; Xiong, Z. Magnetic molecularly imprinted polymers based on eco-friendly deep eutectic solvent for recognition and extraction of three glucocorticoids in lotion. Microchem. J. 2022, 183, 107975. [Google Scholar] [CrossRef]
- Dormann, J.L.; Viart, N.; Rehspringer, J.L.; Ezzir, A.; Niznansky, D. Magnetic properties of Fe2O3 particles prepared by sol-gel method. Hyperfine Interact. 1998, 112, 89–92. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Lu, Z.; Sun, J.; Zhuang, J.; Yang, W. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J. Mater. Chem. 2005, 15, 4252–4257. [Google Scholar] [CrossRef]
- Sobiech, M.; Synoradzki, K.; Bednarchuk, T.J.; Sobczak, K.; Janczura, M.; Giebułtowicz, J.; Luliński, P. Impact of structure and magnetic parameters of nanocrystalline cores on surface properties of molecularly imprinted nanoconjugates for analysis of biomolecules—A case of tyramine. Microchem. J. 2022, 179, 107571. [Google Scholar] [CrossRef]
- Ye, J.; Van de Broek, B.; De Palma, R.; Libaers, W.; Clays, K.; Van Roy, W.; Borghs, G.; Maes, G. Surface morphology changes on silica-coated gold colloids. Colloid Surf. A: Physicochem. Eng. Asp. 2008, 322, 225–233. [Google Scholar] [CrossRef]
- Figueiredo Leite, F.R.; Santos, W.d.J.R.; Kubota, L.T. Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes. Sens. Actuators B: Chem. 2014, 193, 238–246. [Google Scholar] [CrossRef]
- Muratsugu, S.; Shirai, S.; Tada, M. Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett. 2020, 61, 151603. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Alexander, C.; Vulfson, E.N. Imprinted polymers: Versatile new tools in synthesis. Synlett 2000, 6, 911–923. [Google Scholar]
- Mathew, D.; Thomas, B.; Devaky, K.S. Design, synthesis and characterization of enzyme analogue-built polymer catalysts as artificial hydrolases. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1149–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muratsugu, S.; Maity, N.; Baba, H.; Tasaki, M.; Tada, M. Preparation and catalytic performance of a molecularly imprinted Pd complex catalyst for Suzuki cross-coupling reaction. Dalton Trans. 2017, 46, 3125. [Google Scholar] [CrossRef] [PubMed]
- Muratsugu, S.; Baba, H.; Tanimoto, T.; Sawaguchi, K.; Ikemoto, S.; Tasaki, M.; Terao, Y.; Tada, M. Chemoselective epoxidation of cholesterol derivatives on a surface-designed molecularly imprinted Ru-porphyrin catalyst. Chem. Commun. (Camb.) 2018, 54, 5114–5117. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Weng, Z.; Muratsugu, S.; Ishiguro, N.; Ohkoshi, S.; Tada, M. Preparation and catalytic performances of a molecularly imprinted Ru-complex catalyst with an NH2 binding site on a SiO2 surface. Chemistry 2012, 18, 1142–1153. [Google Scholar] [CrossRef]
- Weng, Z.; Muratsugu, S.; Ishiguro, N.; Ohkoshi, S.; Tada, M. Preparation of surface molecularly imprinted Ru-complex catalysts for asymmetric transfer hydrogenation in water media. Dalton Trans. 2011, 40, 2338–2347. [Google Scholar] [CrossRef]
- Muratsugu, S.; Tada, M. Molecularly imprinted Ru complex catalysts integrated on oxide surfaces. Acc. Chem. Res. 2013, 46, 300–311. [Google Scholar] [CrossRef]
- Tada, M.; Sasaki, T.; Iwasawa, Y. Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for α-methylstyrene hydrogenation. J. Phys. Chem. B 2004, 108, 2918–2930. [Google Scholar] [CrossRef]
- Wang, F.; Ling, B.; Li, Q.; Abouhany, R. Dual roles of 3-aminopropyltriethoxysilane in preparing molecularly imprinted silica particles for specific recognition of target molecules. RSC Adv. 2020, 10, 20368–20373. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.; Xu, X.; Zhao, T.; Li, Y.; Jiang, Y.; Lin, K. Hybrid mesoporous organosilicas with molecularly imprinted cavities: Towards extended exposure of active amino groups in the framework wall. Dalton Trans. 2018, 47, 4508–4517. [Google Scholar] [CrossRef] [PubMed]
- Abbate, V.; Bassindale, A.R.; Brandstadt, K.F.; Taylor, P.G. Biomimetic catalysis at silicon centre using molecularly imprinted polymers. J. Catal. 2011, 284, 68–76. [Google Scholar] [CrossRef]
- Effting, L.; Prete, M.C.; Urbano, A.; Effting, L.M.; Cano Gonzalez, M.E.; Bail, A.; Teiceira Tarley, C.R. Preparation of magnetic nanoparticle-cholesterol imprinted polymer using semi-covalent imprinting approach for ultra-effective and highly selective cholesterol adsorption. React. Funct. Polym. 2022, 172, 105178. [Google Scholar] [CrossRef]
- Cui, Y.; Su, A.; Feng, J.; Dong, W.; Li, J.; Wang, H.; Ni, X.; Jiang, Y. Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selectivve and sensitie determination of cetirizine in saliva and urine. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 264, 120293. [Google Scholar] [CrossRef]
- Ahmadi, H.; Faridbod, F.; Mehrzad-Samarin, M. Entacapone detection by a GOQDs-molecularly imprinted silica fluorescent chemical nanosensor. Anal. Bioanal. Chem. 2019, 411, 1075–1084. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, L.; Yu, G.; Liu, Y.; Chen, L. Molecularly imprinted mesoporous silica incorporating C3N4 dots and CdTe quantum dots as ratiometric fluorescent probe for determination of Malachite Green. Microchim. Acta 2019, 186, 556. [Google Scholar] [CrossRef]
- Yang, C.; Wang, L.; Zhang, Z.; Chen, Y.; Deng, Q.; Wang, S. Fluorometric determination of fipronil by integrating the advantages of molecularly imprinted silica and carbon quantum dots. Microchim. Acta 2020, 187, 12. [Google Scholar] [CrossRef]
- Gan, T.; Li, J.; Xu, L.; Guo, S.; Zhao, A.; Sun, J. Multishell Au@Ag@SiO2 nanorods embedded into a molecularly imprinted polymer as electrochemical sensing platform for quantification of theobromine. Microchim. Acta 2020, 187, 291. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Dowlatshah, S.; Saraji, M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples. Anal. Chim. Acta 2020, 1098, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.B.; Lu, T.L.; Chen, J.L. Fluorometric determination of amifostine and alkaline phosphatase on amphiprotic molecularly imprinted silica crosslinked with binary functional silanes and carbon dots. Biosens. Bioelectron. 2020, 151, 111965. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-H.; Zhang, R.-R.; Mu, L.-N.; Huang, Y.-P.; Liu, Z.-S. Fabrication of core-shell sol-gel hybrid molecularly imprinted polymer based on metal–organic framework. Eur. Polym. J. 2019, 121, 109301. [Google Scholar] [CrossRef]
- Kazemifard, N.; Ensafi, A.A.; Rezaei, B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chem. 2020, 310, 125812. [Google Scholar] [CrossRef]
- Tan, L.; Guo, M.; Tan, J.; Geng, Y.; Huang, S.; Tang, Y.; Su, C.; Lin, C.; Liang, Y. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sens. Actuators B Chem. 2019, 291, 226–234. [Google Scholar] [CrossRef]
- Rozaini, M.N.H.; Semail, N.-F.; Saad, B.; Kamaruzaman, S.; Abdullah, W.N.; Rahim, N.A.; Miskam, M.; Loh, S.H.; Noorfatimah, Y. Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta 2019, 199, 522–531. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, M.; Yu, K.; Zhang, Z.; Li, L. A versatile strategy to fabricate magnetic dummy molecularly imprinted mesoporous silica particles for specific magnetic separation of bisphenol A. New J. Chem. 2019, 43, 3400–3408. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, Y.; Wen, H.; Huang, S.; Du, X.; Xue, W. A probe for fluorescence detection of the acetylcholinesterase activity based on molecularly imprinted polymers coated carbon dots. Chem. Pharm. Bull. 2019, 67, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Zakery, M.; Ensafi, A.A.; Rezaei, B. A novel optosensor for rapid detection of difenoconazole using molecularly imprinted polymers. IEEE Sens. J. 2018, 18, 9466–9470. [Google Scholar] [CrossRef]
- Amiri, A.; Faridbod, F.; Zoughi, S. An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J. Photochem. Photobiol. A: Chem. 2021, 408, 113111. [Google Scholar] [CrossRef]
- Boulanouar, S.; Combes, A.; Mezzache, S.; Pichon, V. Synthesis and application of molecularly imprinted silica for the selective extraction of some polar organophosphorus pesticides from almond oil. Anal. Chim. Acta 2018, 1018, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Chen, Y.; Tan, J.; Zhong, Y.; Luo, X.; Pan, X.; Wang, H.; He, R. The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples. Microchem. J. 2021, 164, 105954. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Zakery, M.; Rezaei, B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019, 206, 460–465. [Google Scholar] [CrossRef]
- Gan, T.; Li, J.; Zhao, A.; Xu, J.; Zheng, D.; Wang, H.; Liu, Y. Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem. 2018, 268, 1–8. [Google Scholar] [CrossRef]
- Haghani, S.K.; Ensafi, A.A.; Kazemifard, N.; Rezaei, B. Development of a selective and sensitive chlorogenic acid fluorimetric sensor using molecularly imprinted polymer ZnO quantum dots. IEEE Sens. J. 2020, 20, 5691–5697. [Google Scholar] [CrossRef]
- Huang, S.; Guo, M.; Tan, J.; Geng, Y.; Wu, J.; Tang, Y.; Su, C.; Lin, C.C.; Liang, Y. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl. Mater. Interfaces 2018, 10, 39056–39063. [Google Scholar] [CrossRef]
- Huang, S.; Tan, L.; Zhang, L.; Wu, J.; Zhang, L.; Tang, Y.; Wang, H.; Liang, Y. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2,2-dichlorovinyl dimethyl phosphate. Sens. Actuators: B Chem. 2020, 325, 128751. [Google Scholar] [CrossRef]
- Jalili, R.; Khataee, A. Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem. Toxicol. 2020, 146, 111806. [Google Scholar] [CrossRef]
- Lafarge, C.; Bitar, M.; Hosry, L.E.; Cayot, P.; Bou-Maroun, E. Comparison of molecularly imprinted polymers (MIP) and sol–gel molecularly imprinted silica (MIS) for fungicide in a hydro alcoholic solution. Mater. Today Commun. 2020, 24, 101157. [Google Scholar] [CrossRef]
- Li, B.; Xu, J.; Hall, A.J.; Haupt, K.; Bui, B.T.S. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid. J. Mol. Recognit. 2014, 27, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, K.; Tian, M.; Wang, Y.; Zhang, Z.; Jiang, G.; Li, L. Rapid extraction of trace bisphenol A in real water samples using hollow mesoporous silica surface dummy molecularly imprinted polymers. Anal. Methods 2018, 10, 3926–3932. [Google Scholar] [CrossRef]
- Li, X.; Jiao, H.F.; Shi, X.Z.; Sun, A.; Wang, X.; Chai, J.; Li, D.X.; Chen, J. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens. Bioelectron. 2018, 99, 268–273. [Google Scholar] [CrossRef]
- Li, G.; Zha, J.; Niu, M.; Hu, F.; Hiu, X.; Tang, T.; Fizir, M. Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl. Clay Sci. 2018, 162, 409–417. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid. J. Chromatogr. A 2019, 1602, 168–177. [Google Scholar] [CrossRef]
- Mehrzad-Samarin, M.; Faridbod, F.; Ganjali, M.R. A luminescence nanosensor for ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019, 206, 430–436. [Google Scholar] [CrossRef]
- Pan, X.; He, X.; Liu, Z. Molecularly imprinted mesoporous silica nanoparticles for specific extraction and efficient identification of Amadori compounds. Anal. Chim. Acta 2018, 1019, 65–73. [Google Scholar] [CrossRef]
- Wang, L.; Zhi, K.; Zhang, Y.; Liu, Y.; Zhang, L.; Yasin, A.; Lin, Q. Moleculatly imprinted polymers for Gossypol via sol-gel, bulk, and surface layer imprinting—A comparative study. Polymers 2019, 11, 602. [Google Scholar] [CrossRef] [Green Version]
- Shoja, Y.; Kermanpur, A.; Karimzadeh, F.; Ghodsi, J.; Rafati, A.A.; Adhami, S. Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shere silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of Gemcitabine as a lung cancer chemotherapy medication. Biosens. Bioelectron. 2019, 145, 111611. [Google Scholar] [CrossRef]
Material Composition | Polymerization Method | Target Molecule | Material Form | Application | Ref. |
---|---|---|---|---|---|
T: L-Tryptophan/ D-tryptophan M: APTES C: TEOS S: ITO electrode Brij58 | Acidic sol–gel polymerization on immersed ITO electrode | L-Tryptophan, D-tryptophan | Polymer film on ITO electrode | Electrochemical chiral recognition in buffer solution | [103] |
T: 2,4,6-trichlorophenol M: APTES C: TEOS S: CdSe@CdS QDs Triton X-100 | Reverse microemulsion polymerization | 2,4,6-trichlorophenol | MIP silica microspheres-coated CdSe@CdS QDs | Fluorescent sensor for environmental water analysis | [101] |
T: Bisphenol A M: BIMS C: TEOS CTAB | Basic sol–gel polymerization | Bisphenol A | Imprinted mesoporous silica | Selective removal of bisphenol A from wastewater | [102] |
T: Entacapone M: APTES C: TEOS S: GO QDs | Basic sol–gel polymerization | Entacapone | Molecularly imprinted silica coated on GO QDs | Fluorescent nanosensors for pharmaceutical samples | [187] |
T: Malachite Green M: APTES C: TEOS S: C3N4 QDs, CdTe QDs CTAB | Basic sol–gel polymerization | Malachite Green | Mesoporous silica MIP coated on C3N4 and CdTe QDs | Dual-emission fluorescent probe for fish farming water analysis | [188] |
T: Fipronil M: APTES C: TEOS S: CDs | Basic sol–gel polymerization | Fipronil | Silica MIP coated on CDs | Fluorometric probe for fipronil in spiked eggs, milk, and tap water | [189] |
T: Theobromine M: APTES C: TEOS S: Au@Ag nanorods CTAB | Basic sol–gel polymerization | Theobromine | Multishell Au@Ag@SiO2 nanorods coated with MIP | Electrochemical sensor for quantification of theobromine in food, biological, and environmental samples | [190] |
T: Serotonin M: PTMOS C: TEOS S: Fe3O4@Au | Sol–gel polymerization | Serotonin | Graphite screen-printed electrode modified with Fe3O4@Au@SiO2@MIP | Selective paper-based electrochemical electrode for serotonin determination in dietary supplement capsules and urine | [191] |
T: Difenoconazole M: APTES/PTMOS C: TEOS CTAB | Sol–gel polymerization | Difenoconazole | Silica MIP coating on Nichrome wire | MIP solid-phase microextraction of difenoconazole from wheat and fruits samples for gas chromatography | [192] |
T: Amifostine M: APTES/CSPTMS C: TEOS S: CDs | Sol–gel polymerization | Amifostine, alcaline phosphatase | Silica MIP coated on CDs | Fluorometric sensor for amifostine in human serum | [193] |
T: S-amlodipine M: MAA C: TEOS S: MOF-177 | Acidic sol–gel polymerization | S-amlodipine | Metal framework core-organic/inorganic hybrid shell material | S-amlodipine solution | [194] |
T: Thiabendazole M: APTES C: TEOS S: CDs | Reverse microemulsion polymerization | Thiabendazole | Silica MIP coated on CDs | Fluorometric sensor for determination of thiabendazole in juices | [195] |
T: 1,10-phenanthroline- 4-carboxylic acid M: APTES C: TEOS | Acidic sol–gel polymerization | Aristolochic acid I | Silica MIP gel | Removal of aristolochic acid I from kaempfer dutchmanspipe root extract | [96] |
T: Phoxim M: BUPTEOS C: TEOS S: CsPbBr3 Perovskite QDs | Hydrolysis | Phoxim | Perovskite QDs coated with MIP | Fluorescent sensor for Phoxim detection in potato and soil sample | [196] |
T: Sulfamethoxazole M: APTES C: TEOS S: Agarose gel | Acidic sol–gel surface polymerization on silica gel cores | Sulfamethoxazole, sulfamonomethoxine, sulfadiazine | Membrane consisting of silicon MIP dispersed in an agarose matrix | Separation and preconcentration of sulfonamide antibiotics in water samples | [197] |
T: TBBPA M: ICPTES/GYLMO C: TEOS S: Fe3O4 P123 | Acidic sol–gel polymerization | Bisphenol A | Silica MIP gel with incorporated Fe3O4 | Extraction of Bisphenol A from water samples | [198] |
T: Acetylthiocholine M: APTES C: TEOS S: CDs@AEAPMS | Basic sol–gel polymerization | Acetylcholinesterase | MIP coated CDs composite | Fluorescence detection of acetylcholinesterase | [199] |
T: Difenoconazole M: APTES C: TEOS S: CdTe QDs@ glutatione | Sol–gel polymerization | Difenoconazole | Silica MIP coated CdTe QDs | Fluorescent sensor for detecting and determining difenoconazole in agricultural products | [200] |
T: Cefrazidime M: APTES C: TEOS S: CDs | Basic sol–gel polymerization | Ceftazidime | CDs embedded in silica MIP | Nanosensor to analyze ceftazidime in urine samples | [201] |
T: Bisphenol A, 4-cumylphenol M: APTES, PTMOS C: TEOS S: Fe3O4@SiO2 | Basic sol–gel polymerization on Fe3O4@SiO2 cores | Bisphenol A, 4-cumylphenol | Magnetic silica core–shell MIP | Selective detection of phenolic endocrine disrupting compounds in foodstuffs | [98] |
T: Diazinon/ Monocrotophos M: APTES/PTMOS C: TEOS | Basic sol–gel polymerization | Dimethoate, fenthion sulfoxide, fenthion sulfone, methidathion, malathion, fenitrothion, diazinon, pirimiphosmethyl, fenthion, chlorpyrifosethyl, and monocrotophos | Silica MIP gel | Selective extraction of polar organophosphorus pesticides from almond oil | [202] |
T: Nonylphenol M: NP-3-APTMOS C: TEOS CTAB | Basic sol–gel polymerization | Nonylphenol | Mesoporous silica MIP | Solid-phase extraction of nonylphenol in textile samples | [203] |
T: 1-Naphthyl phosphate M: APTES C: TEOS | Basic sol–gel polymerization—APTES catalyzed | 1-Naphtyl phosphate, naproxen, benzoic acid | Silica MIP gel | Solid-phase microextraction from water samples | [182] |
T: Naproxen M: APTES, FITC- APTES C: TEOS | Basic sol–gel polymerization—APTES catalyzed | Naproxen | Silica MIP gel | Detection of naproxen in spiked tap water | [66] |
T: S-naproxen M: APTES C: TEOS S: CDs | Basic sol–gel polymerization | Naproxen | CDs embedded in silica MIP | Fluorescent nanoprobe for enantioselective quantification of naproxen enantiomers in pharmaceutical samples | [155] |
T: Thioridazine hydrochloride M: APTES C: TEOS S: ZnO QDs Triton X-100 | Basic reverse microemulsion sol–gel polymerization | Thioridazine hydrochloride | ZnO QDs coated with silica MIP | Fluorescent optical sensor for thioridazine hydrochloride detection in plasma samples | [204] |
T: Theophylline M: PTEOS C: TEOS CTAB | Sol–gel polymerization and electrochemical polypyrrole polymerization coated on GCE | Theophylline | Mesoporous silica spheres polypyrrole hybrid on electrode surface | Electrochemical quantification of theophylline in green tea, carbonated cola drink, fermented milk drink, and preserved fruit | [205] |
T: Chlorogenic acid M: APTES C: TEOS S: ZnO QDs Triton X-100 | Reverse microemulsion polymerization | Chlorogenic Acid | ZnO QDs coated with silica MIP | Fluorometric sensor for chlorogenic acid quantification in spiked human plasma samples | [206] |
T: Omethoate M: APTES C: TMOS S: CsPbBr3 perovskite | Sol–gel polymerization | Omethoate | CsPbBr3 perovskite coated with silica MIP | Fluorescent sensor for omethoate quantification in food and soil spiked samples | [207] |
T: 2,2-dichlorovinyl dimethyl phosphate M: APTES C: TMOS S: CsPbBr3 perovskite P 123 | Sol–gel polymerization | 2,2-dichlorovinyl dimethyl phosphate | CsPbBr3 perovskite coated with mesoporous silica MIP | Fluorescent sensor for 2,2-dichlorovinyl dimethyl phosphate in cabbage and lettuce samples | [208] |
T: Chloramphenicol M: APTES C: TEOS S: CDs CTAB | Basic sol–gel polymerization | Chloramphenicol | CDs coated with silica MIP | Dual-emission ratiometric determination of chloramphenicol in milk | [209] |
T: Ipradione M: APTMS 1-[3-(Trimethoxysilyl)propyl]urea N-[3-(Trimethoxysilyl)propyl]aniline C: TEOS | Basic sol–gel polymerization | Iprodione | Silica MIP | Silica MIP for iprodione extraction from standard solution | [210] |
T: Caffeic acid M: PTEOS/APTMS C: TEOS S: MPTS | Acidic sol–gel polymerization | Caffeic acid | Silica MIP film on Au@MPTS electrode | Electrochemical sensor for determination of caffeic acid in wine samples | [172] |
T: Salicylic acid M: APTES/PTMOS C: TEOS | Acidic sol–gel polymerization | Salicylic acid | Silica MIP | Drug delivery carrier | [211] |
T-M: TBBPA-ICPTES or BPA-ICPTES C: TEOS S: HMS | Acidic sol–gel polymerization | Bisphenol A | Hollow mesoporous silica MIP | Extraction of trace bisphenol A in real water samples | [212] |
T: Cyfluthrin M: APTES/MAA C: TEOS/EGDMA S: Triton X-100/AIBN/FeSe QDs | Reverse microemulsion method | Cyfluthrin | FeSe QDs embedded in silica MIP | Selective and sensitive fluorescent nanosensor for cyfluthrin determination in fish and sediment samples | [213] |
T: Norfloxacin M: APTES/MTEOS C: TEOS S: Magnetic halloysite nanotubes | Sol–gel polymerization | Norfloxacin | Magnetic surface imprinted polymer | Extraction of norfloxacin in lake water | [214] |
T: Aristolochic acid M: PTMOS C: TEOS S: Magnetic carbon nanotubes | Sol–gel polymerization | Aristolochic acid | Magnetic carbon nanotubes embedded in silicon MIP | Selective removal of aristolochic acid | [215] |
T: Gossypol M: APTES C: TEOS S: Silica gel | Acidic sol–gel polymerization | Gossypol | Surface silica MIP on a silica gel support | Selective extraction of Gossypol | [99] |
T: Ornidazole M: APTES C: TEOS S: Graphene QDs | Sol–gel polymerization | Ornidazole | Graphene QDs embedded in silica MIP | Luminescence nanosensor for ornidazole detection in biological samples | [216] |
T: Gly-Trp M: ABPA-GPTES C: TEOS S: CTAB | Basic emulsion sol–gel polymerization | N-(1-deoxy-D-glucose-1-yl)tryptophan | Molecularly imprinted mesoporous silica nanoparticles | Selective extraction of specific amadori compounds | [217] |
T: Gossypol M: APTES C: TEOS S: Silica gel | Sol–gel polymerization | Gossypol | Surface layer imprinted silica MIP | Comparison of organic and inorganic MIP composition | [218] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźnica, M.; Sobiech, M.; Luliński, P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. Nanomaterials 2023, 13, 248. https://doi.org/10.3390/nano13020248
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. Nanomaterials. 2023; 13(2):248. https://doi.org/10.3390/nano13020248
Chicago/Turabian StyleWoźnica, Marcin, Monika Sobiech, and Piotr Luliński. 2023. "A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials" Nanomaterials 13, no. 2: 248. https://doi.org/10.3390/nano13020248
APA StyleWoźnica, M., Sobiech, M., & Luliński, P. (2023). A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. Nanomaterials, 13(2), 248. https://doi.org/10.3390/nano13020248