Dumbbell-Shaped Ho-Doped Fiber Laser Mode-Locked by Polymer-Free Single-Walled Carbon Nanotubes Saturable Absorber
Abstract
:1. Introduction
2. Experimental Setup and Materials
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of Mid-Infrared Mode-Locked Laser Sources in the 2.0 μm–3.5 μm Spectral Region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef]
- Kirsch, D.C.; Chen, S.; Sidharthan, R.; Chen, Y.; Yoo, S.; Chernysheva, M. Short-Wave IR Ultrafast Fiber Laser Systems: Current Challenges and Prospective Applications. J. Appl. Phys. 2020, 128, 180906. [Google Scholar] [CrossRef]
- De Marco, L.; Thämer, M.; Reppert, M.; Tokmakoff, A. Direct Observation of Intermolecular Interactions Mediated by Hydrogen Bonding. J. Chem. Phys. 2014, 141, 034502. [Google Scholar] [CrossRef]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-Infrared Frequency Combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Richter, R.A.; Tolstik, N.; Tolstik, N.; Rigaud, S.; Valle, P.D.; Erbe, A.; Ebbinghaus, P.; Astrauskas, I.; Kalashnikov, V.; Kalashnikov, V.; et al. Sub-Surface Modifications in Silicon with Ultra-Short Pulsed Lasers above 2 μm. JOSA B 2020, 37, 2543–2556. [Google Scholar] [CrossRef]
- Kopyeva, M.S.; Filatova, S.A.; Kamynin, V.A.; Trikshev, A.I.; Kozlikina, E.I.; Astashov, V.V.; Loschenov, V.B.; Tsvetkov, V.B. Ex Vivo Exposure to Soft Biological Tissues by the 2-μm All-Fiber Ultrafast Holmium Laser System. Appl. Sci. 2022, 12, 3825. [Google Scholar] [CrossRef]
- Zywicka, B.; Rybak, Z.; Janeczek, M.; Czerski, A.; Bujok, J.; Szymonowicz, M.; Dobrzyński, M.; Korczyński, M.; Świderski, J. Comparison of A 1940 nm Thulium-Doped Fiber Laser and A 1470 nm Diode Laser for Cutting Efficacy and Hemostasis in A Pig Model of Spleen Surgery. Materials 2020, 13, 1167. [Google Scholar] [CrossRef]
- Zou, J.; Talbot, F.; Tata, A.; Ermini, L.; Franjic, K.; Ventura, M.; Zheng, J.; Ginsberg, H.; Post, M.; Ifa, D.R.; et al. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI). Anal. Chem. 2015, 87, 12071–12079. [Google Scholar] [CrossRef]
- Walsh, B.M. Review of Tm and Ho Materials; Spectroscopy and Lasers. Laser Phys. 2009, 19, 855–866. [Google Scholar] [CrossRef]
- Lin, P.; Wang, T.; Ma, W.; Chen, J.; Jiang, Z.; Yu, C. 2- μm Free-Space Data Transmission Based on an Actively Mode-Locked Holmium-Doped Fiber Laser. IEEE Photon. Technol. Lett. 2020, 32, 223–226. [Google Scholar] [CrossRef]
- Tausenev, A.V.; Konov, V.I.; Dianov, E.M.; Obraztsova, E.D.; Chernov, A.I.; Solodyankin, M.A.; Lobach, A.S. Mode-Locked 1.93 μm Thulium Fiber Laser with a Carbon Nanotube Absorber. Opt. Lett. 2008, 33, 1336–1338. [Google Scholar] [CrossRef]
- Mergo, P.; Sotor, J.; Krajewska, A.; SoboŃ, G.; Martynkien, T.; Bogusławski, J.; Przewłoka, A.; StrupiŃski, W. All-Polarization-Maintaining, Stretched-Pulse Tm-Doped Fiber Laser, Mode-Locked by a Graphene Saturable Absorber. Opt. Lett. 2017, 42, 1592–1595. [Google Scholar] [CrossRef]
- Kirsch, D.C.; Bednyakova, A.; Varak, P.; Honzatko, P.; Cadier, B.; Robin, T.; Fotiadi, A.; Peterka, P.; Chernysheva, M. Gain-Controlled Broadband Tuneability in Self-Mode-Locked Thulium-Doped Fibre Laser. Commun. Phys. 2022, 5, 219. [Google Scholar] [CrossRef]
- Hemming, A.; Simakov, N.; Haub, J.; Carter, A. A Review of Recent Progress in Holmium-Doped Silica Fibre Sources. Opt. Fiber Technol. 2014, 20, 621–630. [Google Scholar] [CrossRef]
- Kobtsev, S.M. Artificial Saturable Absorbers for Ultrafast Fibre Lasers. Opt. Fiber Technol. 2022, 68, 102764. [Google Scholar] [CrossRef]
- Chamorovskiy, A.Y.; Marakulin, A.V.; Kurkov, A.S.; Okhotnikov, O.G. Tunable Ho-Doped Soliton Fiber Laser Mode-Locked by Carbon Nanotube Saturable Absorber. Laser Phys. Lett. 2012, 9, 602–606. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Metallic Carbon Nanotube-Based Saturable Absorbers for Holmium-Doped Fiber Lasers. Opt. Express 2019, 27, 11361. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Ge, Y.; Li, Z.; Zhang, H.; Sotor, J. Fundamental and Harmonic Mode-Locking at 2.1 μm with Black Phosphorus Saturable Absorber. Opt. Express 2017, 25, 16916. [Google Scholar] [CrossRef]
- Sotor, J.; Pawliszewska, M.; Sobon, G.; Kaczmarek, P.; Przewolka, A.; Pasternak, I.; Cajzl, J.; Peterka, P.; Honzátko, P.; Kašík, I.; et al. All-Fiber Ho-Doped Mode-Locked Oscillator Based on a Graphene Saturable Absorber. Opt. Lett. 2016, 41, 2592–2595. [Google Scholar] [CrossRef]
- Yang, C.; Duan, X.; Yang, K.; Chen, Y.; Liu, G.; Dai, T.; Mi, S.; Yao, B. 570 MHz Harmonic Mode-Locking in an All Polarization-Maintaining Ho-Doped Fiber Laser. Opt. Express 2020, 28, 33028–33034. [Google Scholar] [CrossRef]
- Hinkelmann, M.; Wandt, D.; Morgner, U.; Neumann, J.; Kracht, D. Mode-Locked Ho-Doped Laser with Subsequent Diode-Pumped Amplifier in an All-Fiber Design Operating at 2052 nm. Opt. Express 2017, 25, 20522. [Google Scholar] [CrossRef] [PubMed]
- Sotor, J.; Martynkien, T.; Przewłoka, A.; Pawliszewska, M. Dispersion-Managed Ho-Doped Fiber Laser Mode-Locked with a Graphene Saturable Absorber. Opt. Lett. 2018, 43, 38–41. [Google Scholar] [CrossRef]
- Li, P.; Ruehl, A.; Bransley, C.; Hartl, I. Low Noise, Tunable Ho:Fiber Soliton Oscillator for Ho:YLF Amplifier Seeding. Laser Phys. Lett. 2016, 13, 065104. [Google Scholar] [CrossRef]
- Filatova, S.A.; Kamynin, V.A.; Zhluktova, I.V.; Trikshev, A.I.; Tsvetkov, V.B. All-Fiber Passively Mode-Locked Ho-Laser Pumped by Ytterbium Fiber Laser. Laser Phys. Lett. 2016, 13, 115103. [Google Scholar] [CrossRef]
- Hu, P.; Mao, J.; Zhou, X.; Feng, T.; Nie, H.; Wang, R.; Zhang, B.; Li, T.; He, J.; Yang, K. Passively Mode-Locked Ho-Doped Fiber Laser with Soliton Rain and Noise-like Pulse Regime. Opt. Laser Technol. 2022, 153, 108215. [Google Scholar] [CrossRef]
- Hu, P.; Mao, J.; Zhou, X.; Feng, T.; Nie, H.; Wang, R.; Zhang, B.; Li, T.; He, J.; Yang, K. Multiple Soliton Mode-Locking Operations of a Holmium-Doped Fiber Laser Based on Nonlinear Polarization Rotation. Opt. Laser Technol. 2023, 161, 109218. [Google Scholar] [CrossRef]
- Filatova, S.A.; Kamynin, V.A.; Arutyunyan, N.R.; Pozharov, A.S.; Trikshev, A.I.; Zhluktova, I.V.; Zolotovskii, I.O.; Obraztsova, E.D.; Tsvetkov, V.B. Hybrid Mode Locking of an All-Fiber Holmium Laser. J. Opt. Soc. Am. B 2018, 35, 3122–3125. [Google Scholar] [CrossRef]
- Filatova, S.A.; Kamynin, V.A.; Arutyunyan, N.R.; Pozharov, A.S.; Obraztsova, E.D.; Itrin, P.A.; Tsvetkov, V.B. Comparison of Mode-Locking Regimes in a Holmium Fibre Laser. Quantum Electron. 2018, 48, 1113–1117. [Google Scholar] [CrossRef]
- Chen, S.-P.; Chen, H.; Jiang, Z.-F.; Hou, J. 80 NJ Ultrafast Dissipative Soliton Generation in Dumbbell-Shaped Mode-Locked Fiber Laser. Opt. Lett. 2016, 41, 4210–4213. [Google Scholar] [CrossRef]
- Chen, S.-P.; Yang, B.-K.; Chen, H.; Qi, X.; Hou, J. Mode-Locked All-Fiber Dumbbell-Shaped Laser Based on a Nonlinear Amplifying Optical Loop Mirror. Appl. Opt. 2016, 55, 8126–8130. [Google Scholar] [CrossRef]
- Wang, X.-D.; Liang, Q.-M.; Luo, A.-P.; Luo, Z.-C.; Liu, M.; Zhu, Y.-F.; Xue, J.-P.; Li, S.-W. Mode Locking and Multiwavelength Q-Switching in a Dumbbell-Shaped Fiber Laser with a Gold Nanorod Saturable Absorber. Opt. Eng. 2019, 58, 056113. [Google Scholar] [CrossRef]
- Zverev, A.D.; Kamynin, V.A.; Trikshev, A.I.; Kovtun, E.Y.; Arutyunyan, N.R.; Mastin, A.A.; Ryabochkina, P.A.; Obraztsova, E.D.; Tsvetkov, V.B. Influence of Saturable Absorber Parameters on the Operation Regimes of a Dumbbell-Shaped Thulium Fibre Laser. Quantum Electron. 2021, 51, 518–524. [Google Scholar] [CrossRef]
- He, J.; Liao, C.; Wang, J.; Han, J.; Wang, Y. High-Energy Mode-Locked Holmium-Doped Fiber Laser Operating in Noise-like Pulse Regime. Opt. Lett. 2019, 44, 4491–4494. [Google Scholar] [CrossRef]
- Filatova, S.; Kamynin, V.; Gladush, Y.; Krasnikov, D.; Nasibulin, A.; Tsvetkov, V. Comparison of Pulsed Generation Parameters in Dumbbell-Shaped and Ring Cavities of the Holmium-Doped Fiber Laser. In Proceedings of the 29th International Conference on Advanced Laser Technologies ALT Conference 2022, Moscow, Russia, 11–16 September 2022; p. 149. [Google Scholar] [CrossRef]
- Kurkov, A.S. Oscillation Spectral Range of Yb-Doped Fiber Lasers. Laser Phys. Lett. 2007, 4, 93–102. [Google Scholar] [CrossRef]
- Mortimore, D.B. Fiber Loop Reflectors. J. Light. Technol. 1988, 6, 1217–1224. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Kaskela, A.; Mustonen, K.; Anisimov, A.S.; Ruiz, V.; Kivistö, S.; Rackauskas, S.; Timmermans, M.Y.; Pudas, M.; Aitchison, B.; et al. Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano 2011, 5, 3214–3221. [Google Scholar] [CrossRef]
- Melkumov, M.; Firstov, S.; Alyshev, S.; Khopin, V.; Khegai, A.; Lobanov, A.; Dianov, E.; Gladush, Y.; Riumkin, K.; Afanasiev, F.; et al. Bismuth-Doped Fiber Laser at 1.32 μm Mode-Locked by Single-Walled Carbon Nanotubes. Opt. Express 2018, 26, 23911–23917. [Google Scholar] [CrossRef]
- Kobtsev, S.; Ivanenko, A.; Gladush, Y.G.; Nyushkov, B.; Kokhanovskiy, A.; Anisimov, A.S.; Nasibulin, A.G.; Chernysheva, A.M.; Rozhin, A.; Fedotov, Y.; et al. Ultrafast All-Fibre Laser Mode-Locked by Polymer-Free Carbon Nanotube Film. Opt. Express 2016, 24, 28768–28773. [Google Scholar] [CrossRef]
- Ososkov, Y.; Khegai, A.; Riumkin, K.; Mkrtchyan, A.; Gladush, Y.; Krasnikov, D.; Nasibulin, A.; Yashkov, M.; Guryanov, A.; Melkumov, M. All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics 2022, 9, 608. [Google Scholar] [CrossRef]
- Zverev, A.D.; Kamynin, V.A.; Trikshev, A.I.; Gladush, Y.G.; Khabushev, E.M.; Krasnikov, D.V.; Nasibulin, A.G.; Mastin, A.A.; Ryabochkina, P.A.; Voronin, V.G.; et al. Dual-Wavelength Soliton Dumbbell-Shaped Thulium-Doped Fiber Laser. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020. [Google Scholar] [CrossRef]
- Galiakhmetova, D.; Gladush, Y.; Mkrtchyan, A.; Fedorov, F.S.; Khabushev, E.M.; Krasnikov, D.V.; Chinnambedu-Murugesan, R.; Manuylovich, E.; Dvoyrin, V.; Rozhin, A.; et al. Direct Measurement of Carbon Nanotube Temperature between Fiber Ferrules as a Universal Tool for Saturable Absorber Stability Investigation. Carbon 2021, 184, 941–948. [Google Scholar] [CrossRef]
- Tian, Y.; Nasibulin, A.G.; Aitchison, B.; Nikitin, T.; Pfaler, J.V.; Jiang, H.; Zhu, Z.; Khriachtchev, L.; Brown, D.P.; Kauppinen, E.I. Controlled Synthesis of Single-Walled Carbon Nanotubes in an Aerosol Reactor. J. Phys. Chem. C 2011, 115, 7309–7318. [Google Scholar] [CrossRef]
- Khabushev, E.M.; Krasnikov, D.V.; Zaremba, O.T.; Tsapenko, A.P.; Goldt, A.E.; Nasibulin, A.G. Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films. J. Phys. Chem. Lett. 2019, 10, 6962–6966. [Google Scholar] [CrossRef] [PubMed]
- Kaskela, A.; Nasibulin, A.G.; Timmermans, M.Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D.P.; Zakhidov, A.; et al. Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Lett. 2010, 10, 4349–4355. [Google Scholar] [CrossRef]
- Schibli, T.R.; Thoen, E.R.; Kärtner, F.X.; Ippen, E.P. Suppression of Q-Switched Mode Locking and Break-up into Multiple Pulses by Inverse Saturable Absorption. Appl. Phys. B 2000, 70, S41–S49. [Google Scholar] [CrossRef]
- Kir’Yanov, A.V.; Barmenkov, Y.O.; Villegas Garcia, I. 2.05 Μm Holmium-Doped All-Fiber Laser Diode-Pumped at 1.125 μm. Laser Phys. 2017, 27, 085101. [Google Scholar] [CrossRef]
Cavity Type | Number of SWCNT Layers | α0 [%] | nGVD [ps2] | λc [nm] | FWHM [nm] | Frep [MHz] | Pp [W] | Pavg [mW] | τ [ps] | E [nJ] | TBP | Self- Start |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D | 1 | 8 | −0.9 | 2086 | 3.0 | 12.0 | 0.83 | 10.5 | CW + ML (1.6) | 0.9 | 0.331 | No |
D | 2 | 18 | −0.9 | 2083 | 3.0 | 11.5 | 0.9 | 9.4 | 1.55 | 0.8 | 0.321 | No |
D | 3 | 32 | −0.9 | 2076 | 3.5 | 12.0 | 0.95 | 7.0 | 1.30 | 0.6 | 0.317 | Yes |
R | 3 | 32 | −1.8 | 2050 | 3 | 12.02 | 2.2 | 12 | 1.5 | 1 | 0.321 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatova, S.A.; Kamynin, V.A.; Gladush, Y.G.; Krasnikov, D.V.; Nasibulin, A.G.; Tsvetkov, V.B. Dumbbell-Shaped Ho-Doped Fiber Laser Mode-Locked by Polymer-Free Single-Walled Carbon Nanotubes Saturable Absorber. Nanomaterials 2023, 13, 1581. https://doi.org/10.3390/nano13101581
Filatova SA, Kamynin VA, Gladush YG, Krasnikov DV, Nasibulin AG, Tsvetkov VB. Dumbbell-Shaped Ho-Doped Fiber Laser Mode-Locked by Polymer-Free Single-Walled Carbon Nanotubes Saturable Absorber. Nanomaterials. 2023; 13(10):1581. https://doi.org/10.3390/nano13101581
Chicago/Turabian StyleFilatova, Serafima A., Vladimir A. Kamynin, Yuriy G. Gladush, Dmitry V. Krasnikov, Albert G. Nasibulin, and Vladimir B. Tsvetkov. 2023. "Dumbbell-Shaped Ho-Doped Fiber Laser Mode-Locked by Polymer-Free Single-Walled Carbon Nanotubes Saturable Absorber" Nanomaterials 13, no. 10: 1581. https://doi.org/10.3390/nano13101581
APA StyleFilatova, S. A., Kamynin, V. A., Gladush, Y. G., Krasnikov, D. V., Nasibulin, A. G., & Tsvetkov, V. B. (2023). Dumbbell-Shaped Ho-Doped Fiber Laser Mode-Locked by Polymer-Free Single-Walled Carbon Nanotubes Saturable Absorber. Nanomaterials, 13(10), 1581. https://doi.org/10.3390/nano13101581