Single and Bunch Soliton Generation in Optical Fiber Lasers Using Bismuth Selenide Topological Insulator Saturable Absorber
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Single Soliton Pulse with Conventional Kelly Sidebands
3.2. Bunched Soliton with Peak-Dip Sidebands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, G.; Thakur, M.; Chen, Y.; Hryniewicz, J. Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses. Appl. Phys. Lett. 1985, 47, 457–459. [Google Scholar] [CrossRef]
- Keller, U.; Weingarten, K.J.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Honninger, C.; Matuschek, N.; Der Au, J.A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef]
- Matsas, V.; Newson, T.; Richardson, D.; Payne, D.N. Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation. Electron. Lett. 1992, 28, 1391–1393. [Google Scholar] [CrossRef]
- Tamura, K. Short pulse lasers and their applications to optical communications. In Proceedings of the 1999 IEEE LEOS Annual Meeting Conference, LEOS’99, 12th Annual Meeting, IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No. 99CH37009), San Francisco, CA, USA, 8–11 November 1999; pp. 537–538. [Google Scholar]
- Voisiat, B.; Gaponov, D.; Gečys, P.; Lavoute, L.; Silva, M.; Hideur, A.; Ducros, N.; Račiukaitis, G. Material processing with ultra-short pulse lasers working in 2 µm wavelength range. In Proceedings of the Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX, San Francisco, CA, USA, 9–12 February 2015; pp. 120–127. [Google Scholar]
- Plamann, K.; Aptel, F.; Arnold, C.; Courjaud, A.; Crotti, C.; Deloison, F.; Druon, F.; Georges, P.; Hanna, M.; Legeais, J.-M. Ultrashort pulse laser surgery of the cornea and the sclera. J. Opt. 2010, 12, 084002. [Google Scholar] [CrossRef]
- Kobtsev, S.M. Artificial saturable absorbers for ultrafast fibre lasers. Opt. Fiber Technol. 2022, 68, 102764. [Google Scholar] [CrossRef]
- Tan, S.J.; Harun, S.W.; Arof, H.; Ahmad, H. Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region. Chin. Opt. Lett. 2013, 11, 073201. [Google Scholar]
- Dong, Z.; Lin, J.; Li, H.; Zhang, Y.; Gu, C.; Yao, P.; Xu, L. Er-doped mode-locked fiber lasers based on nonlinear polarization rotation and nonlinear multimode interference. Opt. Laser Technol. 2020, 130, 106337. [Google Scholar] [CrossRef]
- Zhao, B.; Tang, D.Y.; Zhao, L.; Shum, P.; Tam, H.Y. Pulse-train nonuniformity in a fiber soliton ring laser mode-locked by using the nonlinear polarization rotation technique. Phys. Rev. A 2004, 69, 043808. [Google Scholar] [CrossRef]
- Tan, S.J.; Tiu, Z.C.; Harun, S.W.; Ahmad, H. Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. Chin. Opt. Lett. 2015, 13, 111406. [Google Scholar] [CrossRef]
- Chernysheva, M.A.; Krylov, A.A.; Kryukov, P.G.; Dianov, E.M. Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser. IEEE Photonics Technol. Lett. 2012, 24, 1254–1256. [Google Scholar] [CrossRef]
- Yan, D.; Li, X.; Zhang, S.; Liu, J. Pulse dynamic patterns in a self-starting Mamyshev oscillator. Opt. Express 2021, 29, 9805–9815. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-F.; Wang, H.-Y.; Su, Y.-C.; Chi, Y.-C.; Lin, G.-R. Multi-order bunched soliton pulse generation by nonlinear polarization rotation mode-locking erbium-doped fiber lasers with weak or strong polarization-dependent loss. Laser Phys. 2014, 24, 105113. [Google Scholar] [CrossRef]
- Wu, C.; Yao, Y.; Wu, Q.; Yang, Y.; Tian, J.; Xu, K. Evolutions of versatile wavelength-dependent bound solitons. Opt. Fiber Technol. 2021, 66, 102643. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Cui, J. Generation of soliton rain in a passive mode-locked Tm-doped fiber laser at 2 µm. Opt. Laser Technol. 2020, 128, 106228. [Google Scholar] [CrossRef]
- Han, D.; Yun, L. Observations of three types of sidebands in a passively mode-locked soliton fiber laser. Laser Phys. 2012, 22, 1837–1841. [Google Scholar] [CrossRef]
- Du, Y.; Shu, X.; Cao, H.; Cheng, P. Dynamics of dispersive wave and regimes of different kinds of sideband generation in mode-locked soliton fiber lasers. J. Sel. Top. Quantum Electron. 2017, 24, 1101408. [Google Scholar] [CrossRef]
- Haris, H.; Harun, S.; Anyi, C.; Muhammad, A.; Ahmad, F.; Tan, S.; Nor, R.; Zulkepely, N.; Ali, N.; Arof, H. Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber. J. Mod. Opt. 2016, 63, 777–782. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, S.; Li, X.; Li, H.; Du, J.; Hao, Y. Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser. Opt. Express 2012, 20, 6685–6692. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Luo, M.; Zhao, T.; Mao, Y. Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser. Front. Inf. Technol. Electron. Eng. 2021, 22, 303–311. [Google Scholar] [CrossRef]
- Markom, A.M.; Tan, S.J.; Haris, H.; Paul, M.C.; Dhar, A.; Das, S.; Harun, S.W. Experimental observation of bright and dark solitons mode-locked with zirconia-based erbium-doped fiber laser. Chin. Phys. Lett. 2018, 35, 024203. [Google Scholar] [CrossRef]
- Yap, Y.; Chong, W.; Razgaleh, S.; Huang, N.; Ong, C.; Ahmad, H. Performance of Q-switched fiber laser using optically deposited reduced graphene oxide as saturable absorber. Fiber Integr. Opt. 2022, 41, 26–40. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, Z.; Liu, Y.; Hu, G.; Liu, J. Dual-wavelength, bidirectional single-wall carbon nanotube mode-locked fiber laser. IEEE Photonics Technol. Lett. 2014, 26, 1722–1725. [Google Scholar] [CrossRef]
- Song, Y.-W.; Yamashita, S.; Goh, C.S.; Set, S.Y. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett. 2007, 32, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.B.; Schmidt, A.; Yim, J.H.; Choi, S.Y.; Lee, S.; Rotermund, F.; Griebner, U.; Steinmeyer, G.; Petrov, V.; Mateos, X. Passive mode-locking of a Tm-doped bulk laser near 2 µm using a carbon nanotube saturable absorber. Opt. Express 2009, 17, 11007–11012. [Google Scholar] [CrossRef]
- Taib, N.A.M.; Bidin, N.; Haris, H.; Adnan, N.N.; Ahmad, M.F.S.; Harun, S.W. Multi-walled carbon nanotubes saturable absorber in Q-switching flashlamp pumped Nd: YAG laser. Opt. Laser Technol. 2016, 79, 193–197. [Google Scholar] [CrossRef]
- Haris, H.; Anyi, C.; Ali, N.; Arof, H.; Ahmad, F.; Nor, R.; Zulkepely, N.; Harun, S. Passively Q-switched erbium-doped fiber laser at L-band region by employing multi-walled carbon nanotubes as saturable absorber. J. Optoelectron. Adv. Mater. 2014, 8, 1025–1028. [Google Scholar]
- Kadir, N.; Ismail, E.I.; Latiff, A.A.; Ahmad, H.; Arof, H.; Harun, S.W. Transition metal dichalcogenides (WS2 and MoS2) saturable absorbers for mode-locked erbium-doped fiber lasers. Chin. Phys. Lett. 2017, 34, 014202. [Google Scholar] [CrossRef]
- Mao, D.; She, X.; Du, B.; Yang, D.; Zhang, W.; Song, K.; Cui, X.; Jiang, B.; Peng, T.; Zhao, J. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep. 2016, 6, 23583. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, J.; Velmurugan, V.; Sivabalan, S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Opt. Mater. 2016, 60, 601–617. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.-W.; Liu, M.; Zhao, N.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C.; Zhang, H.; Zhao, C.-J.; Wen, S.-C. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 2014, 22, 6868–6873. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.-P.; Liu, H.; Zhao, N.; Zheng, X.-W.; Liu, M.; Tang, R.; Luo, Z.-C.; Xu, W.-C. Observation of three bound states from a topological insulator mode-locked soliton fiber laser. IEEE Photonics J. 2014, 6, 1501508. [Google Scholar]
- Sotor, J.; Sobon, G.; Abramski, K.M. Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator. Opt. Express 2014, 22, 13244–13249. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Liu, J.; Gao, Y.; Zhang, W. Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus. Opt. Express 2016, 24, 13316–13324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, Y.; Dhanabalan, S.C.; Sophia, J.; Zhao, C.; Xu, C.; Xiang, Y.; Li, J.; Zhang, H. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J. 2016, 8, 1503310. [Google Scholar] [CrossRef]
- Luo, Z.-C.; Liu, M.; Guo, Z.-N.; Jiang, X.-F.; Luo, A.-P.; Zhao, C.-J.; Yu, X.-F.; Xu, W.-C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030–20039. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Li, Y.-Y.; Ma, C.-Y.; Shu, Y.-Q.; Wu, G.; Chen, B.-K.; Huo, J.-Y.; Han, Y.; Liu, L.; Zhang, Y. Ta4C3 MXene as a saturable absorber for femtosecond mode-locked fiber lasers. J. Alloys Compd. 2022, 900, 163529. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, M.; Li, E.; Kang, X.; Ren, Z.; Li, D.; Wang, T.; Lu, B. Tunable high-order harmonic and dual-wavelength mode-locking in Er-doped fiber laser based on Ti3C2T x-Mxene. Appl. Phys. Express 2021, 14, 012009. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Wang, F.; Nie, H.; Wang, R.; Yang, K.; Zhang, B.; He, J. Third-Order Nonlinear Optical Response of Few-Layer MXene Nb2C and Applications for Square-Wave Laser Pulse Generation. Adv. Mater. Interfaces 2021, 8, 2001805. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; He, R.; Liu, Y.; Li, H.; Ni, L.; Wang, Z. Evolution of complex pulse-bunches in a bound-state soliton fiber laser. IEEE Photonics Technol. Lett. 2018, 30, 1475–1478. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, X.; Yin, K.; Jiang, T. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber. Appl. Opt. 2015, 54, 10290–10294. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Lyu, Q.; Yao, Y.; Wang, P. Direct generation of dip-type sidebands from WS 2 mode-locked fiber laser. Opt. Mater. Express 2016, 6, 2475–2486. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, H.; Jiang, G.; Miao, L.; Wang, K.; Tang, S.; Yu, X.; Zhang, H.; Bao, Q. Bilayer bismuth selenide nanoplatelets based saturable absorber for ultra-short pulse generation. Opt. Commun. 2017, 395, 55–60. [Google Scholar] [CrossRef]
- Ahmad, H.; Makhfuz, M.J.M.; Yusoff, N.; Reduan, S.A. Thulium holmium-doped fiber laser mode-locked using Sb2Te3 saturable absorber coated arc-shaped fiber. Infrared Phys. Technol. 2022, 125, 104228. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Ye, J.; Wang, Z.; Liu, Y.-G. Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber. Laser Phys. Lett. 2019, 16, 025103. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Miao, L.; Jiang, G.; Chen, S.; Liu, J.; Fu, X.; Zhao, C.; Zhang, H. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. Opt. Express 2015, 23, 7681–7693. [Google Scholar] [CrossRef]
- Liu, W.; Xiong, X.; Liu, M.; Xing, X.; Chen, H.; Ye, H.; Han, J.; Wei, Z. Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl. Phys. Lett. 2022, 120, 053108. [Google Scholar] [CrossRef]
- Haris, H.; Harun, S.; Muhammad, A.; Anyi, C.; Tan, S.; Ahmad, F.; Nor, R.; Zulkepely, N.; Arof, H. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber. Opt. Laser Technol. 2017, 88, 121–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, H.; Jin, T.S.; Batumalay, M.; Muhammad, A.R.; Sampe, J.; Markom, A.M.; Zain, H.A.; Harun, S.W.; Hasnan, M.M.I.M.; Saad, I. Single and Bunch Soliton Generation in Optical Fiber Lasers Using Bismuth Selenide Topological Insulator Saturable Absorber. Nanomaterials 2023, 13, 1538. https://doi.org/10.3390/nano13091538
Haris H, Jin TS, Batumalay M, Muhammad AR, Sampe J, Markom AM, Zain HA, Harun SW, Hasnan MMIM, Saad I. Single and Bunch Soliton Generation in Optical Fiber Lasers Using Bismuth Selenide Topological Insulator Saturable Absorber. Nanomaterials. 2023; 13(9):1538. https://doi.org/10.3390/nano13091538
Chicago/Turabian StyleHaris, Hazlihan, Tan Sin Jin, Malathy Batumalay, Ahmad Razif Muhammad, Jahariah Sampe, Arni Munira Markom, Huda Adnan Zain, Sulaiman Wadi Harun, Megat Muhammad Ikhsan Megat Hasnan, and Ismail Saad. 2023. "Single and Bunch Soliton Generation in Optical Fiber Lasers Using Bismuth Selenide Topological Insulator Saturable Absorber" Nanomaterials 13, no. 9: 1538. https://doi.org/10.3390/nano13091538
APA StyleHaris, H., Jin, T. S., Batumalay, M., Muhammad, A. R., Sampe, J., Markom, A. M., Zain, H. A., Harun, S. W., Hasnan, M. M. I. M., & Saad, I. (2023). Single and Bunch Soliton Generation in Optical Fiber Lasers Using Bismuth Selenide Topological Insulator Saturable Absorber. Nanomaterials, 13(9), 1538. https://doi.org/10.3390/nano13091538