Optical and Electrical Analyses of Solar Cells with a Radial PN Junction and Incorporating an Innovative NW Design That Mimics ARC Layers
Abstract
:1. Introduction
2. Results and Discussions
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The White House: Office of the Press Secretary. Treasury Releases New Guidance to Drive Clean Energy Investment to America’s Energy Communities. Available online: https://www.whitehouse.gov/cleanenergy/clean-energy-updates/2023/04/04/treasury-releases-new-guidance-to-drive-clean-energy-investment-to-americas-energy-communities/ (accessed on 8 April 2023).
- United Nations Framework Convention on Climate Change. New Mechanism Provides a Key Tool for Countries to Meet Their Climate Goals. Available online: https://unfccc.int/news/new-mechanism-provides-a-key-tool-for-countries-to-meet-their-climate-goals (accessed on 8 April 2023).
- European Commission—Press Release. European Green Deal: EU Agrees Stronger Rules to Boost Energy Efficiency. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_1581 (accessed on 8 April 2023).
- Department for Energy Security and Net Zero—Policy Paper. Powering up Britain. Available online: https://www.gov.uk/government/publications/powering-up-britain (accessed on 8 April 2023).
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Khattak, C.P.; Ravi, K.V. Silicon Processing for Photovoltaics; North-Holland Physics Publishing: Chestnut Hill, MA, USA, 1985. [Google Scholar]
- Krebs, F.C. Polymer Photovoltaics: A Practical Approach; SPIE Press: Bellingham, WA, USA, 2008. [Google Scholar]
- International Energy Agency. World Energy Outlook. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 19 April 2023).
- European Comission. Commission Staff Working Document Annual Single Market Report 2021. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52021SC0351 (accessed on 24 March 2023).
- Green, M.A.; Dunlop, E.D.; Siefer, G. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- LONGi. LONGi once again Sets New World Record for HJT Solar Cell Efficiency. Press Release, 24 June 2022. Available online: https://www.longi.com/en/news/new-hjt-world-record/ (accessed on 19 April 2023).
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Meng, T.; Hamada, H.; Druffel, T.; Lee, J.-J.; Rajeshwar, K. Review—Research Needs for Photovoltaics in the 21st Century. ECS J. Solid State Sci. Technol. 2020, 9, 125010. [Google Scholar]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems: Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Lotsch, H.K.V.; Goetzberger, A.; Hoffman, V.U. Photovoltaic Solar Energy Generation; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Dan, Y.; Seo, K.; Takei, K.; Meza, J.H.; Javey, A.; Crozier, K.B. Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires. Nano Lett. 2011, 11, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Böer, K.W. Handbook of the Physics of Thin-Film Solar Cells; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Seethamraju, S.; Ramamurthy, P.C.; Madras, G. Encapsulation for Improving the Efficiencies of Solar Cells. In Materials and Processes for Solar Fuel Production; Springer: New York, NY, USA, 2014. [Google Scholar]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Ndiaye, A.; Kebe, C.M.F.; Ndiaye, P.A.; Charki, A.; Kobi, A.; Sambou, V. Impact of dust on the photovoltaic modules characteristics after an exposition year in Sahelian environment: The case of Senegal. Int. J. Phys. Sci. 2013, 8, 1166. [Google Scholar] [CrossRef]
- Chander, S.; Purohit, A.; Sharma, A.; Nehra, S.P.; Dhaka, M.S. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Rep. 2015, 1, 175–180. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering, 2nd ed.; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Baker-Finch, S.; McIntosh, K. Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. 2011, 19, 406–416. [Google Scholar] [CrossRef]
- Liu, B.-T.; Hung, T.-Y.; Gorji, N.E.; Mosavi, A.H. Fabrication and characterization of Cesium-doped Tungstate nanorods for Near-Infrared light absorption in dye sensitized solar cells. Results Phys. 2021, 29, 104804. [Google Scholar] [CrossRef]
- Mallorqui, A.; Epple, F.M.; Fan, D.; Demichel, O.; Fontcuberta, A.; Morral, I. Effect of the pn junction engineering on Si microwire-array solar cells. Phys. Status Solidi A 2012, 209, 1588–1591. [Google Scholar] [CrossRef]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cansizoglu, H.; Polat, K.G.; Ghandiparsi, S.A.; Mamtaz, H.; Mayet, A.; Wang, Y.; Zhang, X.; Toshishige, Y.; Devine, E.P.; et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 2017, 11, 301–308. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Singh, N.; Lee, S. Optical and electrical study of core-shell silicon nanowires for solar applications. Opt. Express 2011, 19, A1057–A1066. [Google Scholar] [CrossRef]
- Saive, R. Light trapping in thin silicon solar cells: A review on fundamentals and technologies. Prog. Photovolt. Res. Appl. 2021, 29, 1125–1137. [Google Scholar] [CrossRef]
- Park, K.; Guo, Z.; Um, H.-D.; Jung, J.-Y.; Yang, J.-M.; Lim, S.K.; Kim, Y.S.; Lee, J.-H. Optical Properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics. Opt. Express 2011, 19, A41. [Google Scholar] [CrossRef]
- Cabrera-España, F.J.; Kamuka, A.; Khaled, A.; Hameed, M.F.O.; Obayya, S.S.A.; Rahman, B.M.A. Optical and Electrical Characteristics of Innovative Solar Cell with Nanowires Mimicking Anti Reflection Coating layers. Prog. Photovolt. 2023, submitted.
- Taflove, A. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology; Artech House: London, UK, 2013. [Google Scholar]
- Lumerical Solutions, Inc.; Ansys Canada Ltd.: Vancouver. 2022. Available online: http://www.lumerical.com (accessed on 8 April 2023).
- Kupec, J.; Stoop, R.L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589–27605. [Google Scholar] [CrossRef]
- Rahman, B.M.A.; Agrawal, A. Finite Element Modeling Methods for Photonics; Artech House: London, UK, 2013. [Google Scholar]
- Hwang, I.; Jeong, J.; Shiratori, Y.; Park, J.; Miyajima, S.; Yoon, I.; Seo, K. Effective Photon Management of Non-Surface-Textured Flexible Thin Crystalline Silicon Solar Cells. Cell Rep. Phys. Sci. 2020, 1, 100242. [Google Scholar] [CrossRef]
- El-Bashar, R.; Hussein, M.; Hegazy, S.F.; Badr, Y.; Rahman, B.M.A.; Grattan, K.T.V.; Hameed, M.F.O.; Obayya, S.S.A. Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell. Sci. Rep. 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Lin, G.; Chen, Y.; Zheng, Y.; Sang, N.; Li, Y.; Chen, L.; Li, M. Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 2020, 205, 275–281. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-España, F.J.; Rahman, B.M.A. Optical and Electrical Analyses of Solar Cells with a Radial PN Junction and Incorporating an Innovative NW Design That Mimics ARC Layers. Nanomaterials 2023, 13, 1649. https://doi.org/10.3390/nano13101649
Cabrera-España FJ, Rahman BMA. Optical and Electrical Analyses of Solar Cells with a Radial PN Junction and Incorporating an Innovative NW Design That Mimics ARC Layers. Nanomaterials. 2023; 13(10):1649. https://doi.org/10.3390/nano13101649
Chicago/Turabian StyleCabrera-España, Francisco J., and B. M. Azizur Rahman. 2023. "Optical and Electrical Analyses of Solar Cells with a Radial PN Junction and Incorporating an Innovative NW Design That Mimics ARC Layers" Nanomaterials 13, no. 10: 1649. https://doi.org/10.3390/nano13101649
APA StyleCabrera-España, F. J., & Rahman, B. M. A. (2023). Optical and Electrical Analyses of Solar Cells with a Radial PN Junction and Incorporating an Innovative NW Design That Mimics ARC Layers. Nanomaterials, 13(10), 1649. https://doi.org/10.3390/nano13101649