Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells
Abstract
:1. Introduction
2. Crystal Structure and Basic Properties of CsPbBr3
3. The Device Structure of PSCs
4. Mono-Green Solvent Systems
5. All-Green Solvent Systems
6. Approaches to Improving PCE in CsPbBr3 Perovskite Cells
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Han, X.; Huang, H.; Meng, Q.; Zhu, Z.; Yu, T.; Li, Z.; Zou, Z. Curing the fundamental issue of impurity phases in two-step solution-processed CsPbBr3 perovskite films. Sci. Bull. 2020, 65, 726–737. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, W.; Lin, P.; Tian, L.; Li, X.; Jiang, Y.; Du, L.; Zhou, X.; Wen, F.; Duan, G.; et al. Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. J. Alloys Compd. 2021, 885, 160900. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Lu, H.; Lee, T.K.; Eickemeyer, F.T.; Liu, Y.; Choi, I.W.; Choi, S.J.; Jo, Y.; Kim, H.-B. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306. [Google Scholar] [CrossRef]
- Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Gratzel, M.; et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92–95. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; Wu, T.; Lan, Z.; Huang, M. Dimethyl Sulfoxide Solvent Engineering for High Quality Cation-Anion-Mixed Hybrid and High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 346–351. [Google Scholar] [CrossRef]
- Park, B.W.; Seok, S.I. Intrinsic Instability of Inorganic-Organic Hybrid Halide Perovskite Materials. Adv. Mater. 2019, 31, e1805337. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Tress, W. Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv. Mater. 2019, 31, 1902851. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef]
- Tai, Q.; Tang, K.-C.; Yan, F. Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 2019, 12, 2375–2405. [Google Scholar] [CrossRef]
- Li, B.; Fu, L.; Li, S.; Li, H.; Pan, L.; Wang, L.; Chang, B.; Yin, L. Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies. J. Mater. Chem. A 2019, 7, 20494–20518. [Google Scholar] [CrossRef]
- Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Adv. Funct. Mater. 2018, 28, 1803269. [Google Scholar] [CrossRef]
- Wang, J.; Che, Y.; Duan, Y.; Liu, Z.; Yang, S.; Xu, D.; Fang, Z.; Lei, X.; Li, Y.; Liu, S. 21.15%-Efficiency and Stable γ-CsPbI3 Perovskite Solar Cells Enabled by an Acyloin Ligand. Adv. Mater. 2023, 2210223. [Google Scholar] [CrossRef]
- Zou, H.; Duan, Y.; Yang, S.; Xu, D.; Yang, L.; Cui, J.; Zhou, H.; Wu, M.; Wang, J.; Lei, X. 20.67%-Efficiency Inorganic CsPbI3 Solar Cells Enabled by Zwitterion Ion Interface Treatment. Small 2023, 19, 2206205. [Google Scholar] [CrossRef]
- Yao, H.; Zhao, J.; Li, Z.; Ci, Z.; Jin, Z. Research and progress of black metastable phase CsPbI 3 solar cells. Mater. Chem. Front. 2021, 5, 1221–1235. [Google Scholar] [CrossRef]
- Zhong, T.; Tang, K.; Xu, W.; Shi, L.; Dong, J.; Liu, H.; Xing, J.; Hao, H. NH4Ac boosts the efficiency of carbon-based all-inorganic perovskite solar cells fabricated in the full ambient air to 15.43%. Appl. Surf. Sci. 2023, 610, 155175. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, Z.; Zhao, W.; Zhang, J.; Bian, H.; Fang, Y.; Yang, Y.; Liu, S. Enhanced efficiency of inorganic CsPbI3−xBrx perovskite solar cell via self-regulation of antisite defects. Adv. Energy Mater. 2021, 11, 2100403. [Google Scholar] [CrossRef]
- Ye, Q.; Zhao, Y.; Mu, S.; Ma, F.; Gao, F.; Chu, Z.; Yin, Z.; Gao, P.; Zhang, X.; You, J. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 2019, 31, 1905143. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, J.; Du, J.; Guo, Q.; Zhang, Q.; Yang, X.; Duan, Y.; Tang, Q. Tailored Lattice “Tape” to Confine Tensile Interface for 11.08%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cell with an Ultrahigh Voltage of 1.702 V. Adv. Sci. 2021, 8, 2101418. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Yan, J.; Hou, S.; Li, X.; Dong, J.; Zou, L.; Yang, M.; Xing, J.; Liu, H.; Hao, H. Preparation of highly efficient and stable CsPbBr3 perovskite solar cells based on an anti-solvent rinsing strategy. Sol. Energy Mater. Sol. Cells 2022, 234, 111420. [Google Scholar] [CrossRef]
- Kumar, N.; Rani, J.; Kurchania, R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability. Sol. Energy 2021, 221, 197–205. [Google Scholar] [CrossRef]
- Gao, B.; Meng, J. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method. Sol. Energy 2020, 211, 1223–1229. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 2018, 30, 1800855. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tong, G.; Chen, T.; Zhu, H.; Li, G.; Chang, Y.; Wang, L.; Jiang, Y. Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr3 solar cells. J. Mater. Chem. A 2018, 6, 14255–14261. [Google Scholar] [CrossRef]
- Huang, D.; Xie, P.; Pan, Z.; Rao, H.; Zhong, X. One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. J. Mater. Chem. A 2019, 7, 22420–22428. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Wang, X.; Tao, J.; Li, Z.; Zheng, D.; Jiang, J.; Hu, Z.; Chu, J. Efficient carbon-based planar CsPbBr3 perovskite solar cells with Li-doped amorphous Nb2O5 layer. J. Alloy. Compd. 2020, 842, 155984. [Google Scholar] [CrossRef]
- Han, Y.; Xie, H.; Lim, E.L.; Bi, D. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Sol. RRL 2022, 6, 2101007. [Google Scholar] [CrossRef]
- Cui, L.; He, B.; Ding, Y.; Zhu, J.; Yao, X.; Ti, J.; Chen, H.; Duan, Y.; Tang, Q. Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr3 perovskite solar cells. Chem. Eng. J. 2022, 431, 134193. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Cai, Y.; Jiang, L.; Yang, W.; Song, W.; He, X.; Zeng, Q.; Jia, Y.; Wei, J. A sustainable solvent system for processing CsPbBr3 films for solar cells via an anomalous sequential deposition route. Green Chem. 2021, 23, 470–478. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, Y.; He, B.; Tang, Q. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew. Chem. Int. Ed. 2018, 57, 3787–3791. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Interfacial strain release from the WS2/CsPbBr3 van der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. 2020, 132, 22181–22185. [Google Scholar] [CrossRef]
- Zhu, J.; He, B.; Wang, M.; Yao, X.; Huang, H.; Chen, C.; Chen, H.; Duan, Y.; Tang, Q. Elimination of defect and strain by functionalized CQDs dual-engineering for all-inorganic HTMs-free perovskite solar cells with an ultrahigh voltage of 1.651 V. Nano Energy 2022, 104, 107920. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H.; Wang, Y.; Yang, X.; Duan, J.; Tang, Q. 10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells. J. Power Sources 2019, 440, 227151. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Monteagudo-Arrebola, M.J.; Dobado, J.A.; Isac-García, J. Green and bio-based solvents. Top. Curr. Chem. 2018, 376, 18. [Google Scholar] [CrossRef]
- Zhao, P.; Kim, B.J.; Ren, X.; Lee, D.G.; Bang, G.J.; Jeon, J.B.; Kim, W.B.; Jung, H.S. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 2018, 30, 1802763. [Google Scholar] [CrossRef]
- Yavari, M.; Mazloum-Ardakani, M.; Gholipour, S.; Tavakoli, M.M.; Turren-Cruz, S.H.; Taghavinia, N.; Grätzel, M.; Hagfeldt, A.; Saliba, M. Greener, nonhalogenated solvent systems for highly efficient perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800177. [Google Scholar] [CrossRef]
- Bu, T.; Wu, L.; Liu, X.; Yang, X.; Zhou, P.; Yu, X.; Qin, T.; Shi, J.; Wang, S.; Li, S. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q.; Yan, L.; Guo, P.; Zhou, L.; Wang, G.; Zheng, Z.; Luo, W. Improving the performance and reproducibility of inverted planar perovskite solar cells using tetraethyl orthosilicate as the antisolvent. ACS Appl. Mater. Interfaces 2019, 11, 3909–3916. [Google Scholar] [CrossRef]
- Yun, Y.; Wang, F.; Huang, H.; Fang, Y.; Liu, S.; Huang, W.; Cheng, Z.; Liu, Y.; Cao, Y.; Gao, M. A nontoxic bifunctional (anti) solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 2020, 32, 1907123. [Google Scholar] [CrossRef]
- Kim, H.-S.; Im, S.H.; Park, N.-G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 2014, 118, 5615–5625. [Google Scholar] [CrossRef]
- Ullah, S.; Wang, J.; Yang, P.; Liu, L.; Yang, S.-E.; Xia, T.; Guo, H.; Chen, Y. All-inorganic CsPbBr3 perovskite: A promising choice for photovoltaics. Mater. Adv. 2021, 2, 646–683. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, P.; Wang, C.; Wang, Y.; Hu, Y.; Zhu, G.; Ma, L.; Liu, J.; Jin, Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 2017, 139, 14009–14012. [Google Scholar] [CrossRef] [PubMed]
- Weber, D. CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NHa3PbX3, a Pb (II)-system with cubic perovskite structure. Z. Nat. B 1978, 33, 1443–1445. [Google Scholar]
- Kim, H.S.; Seo, J.Y.; Park, N.G. Material and device stability in perovskite solar cells. ChemSusChem 2016, 9, 2528–2540. [Google Scholar] [CrossRef]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, W.; Li, Y.; Ye, S.; Rao, H.; Gu, F.; Liu, Z.; Bian, Z.; Huang, C. Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J. Mater. Chem. A 2017, 5, 4756–4773. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Jiang, L.; Cai, Y.; Gao, Y.; Yang, W.; He, X.; Zeng, Q.; Xing, G.; Jia, Y. Water, a green solvent for fabrication of high-quality CsPbBr3 films for efficient solar cells. ACS Appl. Mater. Interfaces 2019, 12, 5925–5931. [Google Scholar] [CrossRef]
- Clever, H.L.; Johnston, F.J. The solubility of some sparingly soluble lead salts: An evaluation of the solubility in water and aqueous electrolyte solution. J. Phys. Chem. Ref. Data 1980, 9, 751–784. [Google Scholar] [CrossRef]
- Bi, J.; Chang, J.; Lei, M.; Zhang, W.; Meng, F.; Wang, G. Thiourea-Assisted Facile Fabrication of High-Quality CsPbBr3 Perovskite Films for High-Performance Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 48888–48896. [Google Scholar] [CrossRef]
- Jiao, Y.; Yao, X.; Bao, F.; Mao, J.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q.; He, B. Crystallization Regulation and Dual-Defects Healing by Self-Polymerization of Multifunctional Monomer Additives for Stable and Efficient CsPbBr3 Perovskite Solar Cells. Solar RRL 2023, 7, 2200883. [Google Scholar] [CrossRef]
- Zhang, Z.; Ba, Y.; Chen, D.; Ma, J.; Zhu, W.; Xi, H.; Chen, D.; Zhang, J.; Zhang, C.; Hao, Y. Generic water-based spray-assisted growth for scalable high-efficiency carbon-electrode all-inorganic perovskite solar cells. iScience 2021, 24, 103365. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, L.; Yan, L.; Xiang, X.; Zhao, X.; Yang, S.; Xu, B. Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through High-Throughput Inkjet Printing. Adv. Funct. Mater. 2019, 29, 1905487. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Zeng, J.; Jiang, Z.; Ai, Q.; Zhang, X.; Hu, B.; Wang, X.; Yang, S.; Xu, B. Inkjet-Printing Controlled Phase Evolution Boosts the Efficiency of Hole Transport Material Free and Carbon-Based CsPbBr3 Perovskite Solar Cells Exceeding 9%. Energy Environ. Mater. 2022, e12543. [Google Scholar] [CrossRef]
- Meng, Q.; Feng, J.; Huang, H.; Han, X.; Zhu, Z.; Yu, T.; Li, Z.; Zou, Z. Simultaneous Optimization of Phase and Morphology of CsPbBr3 Films via Controllable Ostwald Ripening by Ethylene Glycol Monomethylether/Isopropanol Bi-Solvent Engineering. Adv. Eng. Mater. 2020, 22, 2000162. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, W.; Huang, C.; Wu, L.; Liu, C.; Tian, Q.; Peng, Z.; Chen, J. A Novel Solvent for Multistep Solution-Processed Planar CsPbBr3 Perovskite Solar Cells Using In2S3 as Electron Transport Layer. Energy Technol. 2022, 10, 2200054. [Google Scholar] [CrossRef]
- Wang, S.; Cao, F.; Sun, W.; Wang, C.; Yan, Z.; Wang, N.; Lan, Z.; Wu, J. A green Bi-Solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells. Mater. Today Phys. 2022, 22, 100614. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, W.; Han, T.; Wang, T.; Chai, W.; Zhu, J.; Xi, H.; Chen, D.; Lu, G.; Dong, P. Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature, High-Efficiency Carbon-Electrode CsPbBr3 Solar Cells. Energy Environ. Mater. 2022, e12524. [Google Scholar] [CrossRef]
- Yuan, B.; Li, N.; Liu, J.; Xu, F.; Li, C.; Juan, F.; Yu, H.; Li, C.; Cao, B. Improving the performances of CsPbBr3 solar cells fabricated in ambient condition. J. Mater. Sci. Mater. Electron. 2020, 31, 21154–21167. [Google Scholar] [CrossRef]
- Wan, X.; Yu, Z.; Tian, W.; Huang, F.; Jin, S.; Yang, X.; Cheng, Y.-B.; Hagfeldt, A.; Sun, L. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. J. Energy Chem. 2020, 46, 8–15. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, T.; Li, Z.; Zhao, B.; Ma, X.; Chen, Y.; Liu, Z.; Chen, H.; Li, X. Crystallization Kinetics Engineering toward High-Performance and Stable CsPbBr3-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 10610–10617. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Jiang, L.; Cai, Y.; Wang, Y.; He, X.; Zeng, Q.; Chen, J.; Jia, Y.; Wei, J. Achieving environment-friendly production of CsPbBr3 films for efficient solar cells via precursor engineering. Green Chem. 2021, 23, 2104–2112. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, G.; Cai, Y.; Jiang, L.; He, X.; Zeng, Q.; Wei, J.; Jia, Y.; Xing, G.; Huang, W. All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the hansen solubility theory. Sol. RRL 2020, 4, 2000008. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Sheng, F.; Li, Y.; Zhi, L.; Cao, X.; Cui, X.; Zhuang, D.; Wei, J. Preparation of CsPbBr3 Films for Efficient Perovskite Solar Cells from Aqueous Solutions. ACS Appl. Energy Mater. 2021, 4, 5504–5510. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.; Jacak, J. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Jacak, W.A.; Jacak, J.E. New channel of plasmon photovoltaic effect in metalized perovskite solar cells. J. Phys. Chem. C 2019, 123, 30633–30639. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for metallization of perovskite solar cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Park, N.G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019. [Google Scholar] [CrossRef]
Solvent or Additive for PbBr2 | Solvent or Additive for CsBr | Fabrication Method | Jsc (mA·cm−2) | Voc (V) | PCE(%) | FF | Ref. |
---|---|---|---|---|---|---|---|
DMF | H2O | Spin-coating method | 7.48 | 0.688 | 6.12 | 0.688 | [50] |
DMF + DMSO(9:1) | Methanol + H2O(5:1) | Spin-coating method | 6.89 | 1.49 | 8.11 | 0.79 | [62] |
DMF + DMSO(1:1) | H2O | Spin-coating method | 7.96 | 1.555 | 10.27 | 0.83 | [60] |
DMF | 2-methoxyethanol | Spin-coating method | 6.96 | 1.36 | 6.54 | 0.69 | [58] |
DMF | Methanol + H2O(6:1) | Spin-coating method | 7.28 | 1.28 | 7.08 | 0.76 | [61] |
DMF | EGME/IPA | Spin-coating method | 7.12 | 1.49 | 7.29 | 0.688 | [57] |
DMF | H2O | Spin-coating method | 7.64 | 1.52 | 9.14 | 0.79 | [63] |
DMF | H2O | Water-based spray-assisted growth method | 8.06 | 1.528 | 10.22 | 0.83 | [54] |
DMF + DMSO(9: 1) | Methanol:H2O(10: 1) | Inkjet-printing method | 7.36 | 1.512 | 9.09 | 0.817 | [56] |
DMF | H2O + EGME(1:1) | Spin-coating method | 7.48 | 1.51 | 9.55 | 0.844 | [59] |
DMF + Thiourea | H2O | Spin-coating method | 8.81 | 1.38 | 9.11 | 0.75 | [52] |
DMF | H2O +HAM | Spin-coating method | 7.54 | 1.468 | 9.05 | 81.76 | [53] |
Solvent or Additive for PbBr2 | Solvent or Additive for CsBr | Fabrication Method | Jsc (mA·cm−2) | Voc (V) | PCE(%) | FF | Ref. |
---|---|---|---|---|---|---|---|
TEP | H2O:EA:ethylene glycol(1:1:0.1) | Anomalous sequential Spin-coating method | 7.04 | 1.30 | 6.86 | 0.75 | [32] |
H2O + HBr + PEG | H2O | Spin-coating method | 7.18 | 1.32 | 7.19 | 0.759 | [66] |
γ-butyrolactone + PEG | H2O | Spin-coating method | 7.78 | 1.22 | 6.89 | 0.725 | [65] |
Pb(NO3)2/H2O + PEABr/IPA | H2O | Spin-coating method | 6.12 | 1.44 | 6.25 | 0.709 | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Fan, Z.; Dong, J. Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials 2023, 13, 991. https://doi.org/10.3390/nano13060991
Cheng J, Fan Z, Dong J. Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials. 2023; 13(6):991. https://doi.org/10.3390/nano13060991
Chicago/Turabian StyleCheng, Jiajie, Zhenjun Fan, and Jingjing Dong. 2023. "Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells" Nanomaterials 13, no. 6: 991. https://doi.org/10.3390/nano13060991
APA StyleCheng, J., Fan, Z., & Dong, J. (2023). Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials, 13(6), 991. https://doi.org/10.3390/nano13060991