Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting
Abstract
:1. Introduction
2. Phase Control
3. Morphology Control
4. Defect Engineering
4.1. Oxygen Vacancy
4.2. Hetero Atom Doping
5. Heterostructure Construction
5.1. Semiconductor–WOx
5.2. WOx–C
5.3. Metal–WOx
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, S.; Zhang, W.; Zhang, Q.; Du, J.; Cheng, H.-M.; Ren, W. Heterostructured Ni-Mo-N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. Carbon 2020, 165, 122–128. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, H.; Huang, B.; Li, B.; Li, H.; Han, Y.; Wang, Z.; Wu, X.; Pan, Y.; Sun, Y.; et al. Advanced ultrathin RuPdM (M = Ni, Co, Fe) nanosheets electrocatalyst boosts hydrogen evolution. ACS Cent. Sci. 2019, 5, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Che, Q.; Li, Q. Constructing double-layer CoP/CeO2-FeOxH hybrid catalysts for alkaline and neutral water splitting. ACS Sustain. Chem. Eng. 2021, 9, 11981–11990. [Google Scholar] [CrossRef]
- Shao, X.; Liang, M.; Kumar, A.; Liu, X.; Jin, H.; Ajmal, S.; Bui, V.Q.; Bui, H.T.D.; Lee, J.; Tran, N.Q.; et al. Amorphization of metal nanoparticles by 2D twisted polymer for super hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2102257. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, C.H.; Li, N.W.; Luan, D.; Yu, L.; Lou, X.W. Design and synthesis of hollow nanostructures for electrochemical water splitting. Adv. Sci. 2022, 9, 2105135. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yu, W.-L.; Zhao, J.; Dong, B.; Liu, C.-G.; Chai, Y.-M. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl. Mater. Today 2021, 22, 100913. [Google Scholar] [CrossRef]
- Coles, D.; Wray, B.; Stevens, R.; Crawford, S.; Pennock, S.; Miles, J. Impacts of tidal stream power on energy system security: An Isle of wight case study. Appl. Energy 2023, 334, 120686. [Google Scholar] [CrossRef]
- Gao, C.Y.; Yu, X.Y.; Nan, H.P.; Zhang, Z.Y.; Wu, L.C.; Men, C.; Cai, Q.S. Advancement and capacity allocation analysis of variable speed hydropower units for suppressing wind power fluctuations. Front. Energy Res. 2023, 10, 1030797. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Sanchez, R.G.; Amillo, A.G.; Szabo, S.; De Felice, M.; Farinosi, F.; De Felice, L.; Bisselink, B.; Seliger, R.; Kougias, I.; et al. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renew. Sustain. Energy Rev. 2023, 171, 112989. [Google Scholar] [CrossRef]
- Ogunjo, S.; Olusola, A.; Olusegun, C. Potential of using floating solar photovoltaic and wind farms for sustainable energy generation in an existing hydropower station in Nigeria. Clean Technol. Environ. Policy 2023. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Wang, B.L.; Jiang, H. China’s hydropower resources and development. Sustainability 2023, 15, 3940. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Tilley, S.D.; Vrubel, H.; Grätzel, M.; Hu, X. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059. [Google Scholar] [CrossRef] [PubMed]
- Jiang, E.; Li, J.; Li, X.; Ali, A.; Wang, G.; Ma, S.; Zhu, J.; Shen, P.K. MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2022, 431, 133719. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Escalera-López, D.; Czioska, S.; Geppert, J.; Boubnov, A.; Röse, P.; Saraçi, E.; Krewer, U.; Grunwaldt, J.-D.; Cherevko, S. Phase- and surface composition-dependent electrochemical stability of Ir-Ru nanoparticles during oxygen evolution reaction. ACS Catal. 2021, 11, 9300–9316. [Google Scholar] [CrossRef]
- da Silva Veras, T.; Mozer, T.S.; da Costa Rubim Messeder dos Santos, D.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, S.; Ma, Z.; Kundu, M.; Tang, B.; Li, J.; Wang, X. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 2021, 404, 126474. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, M.; Geng, H.; Dong, H.; Wu, P.; Li, X.; Guan, G.; Wang, T. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561. [Google Scholar] [CrossRef]
- Zhao, D.; Dai, M.; Liu, H.; Duan, Z.; Tan, X.; Wu, X. Bifunctional ZnCo2S4@CoZn13 hybrid electrocatalysts for high efficient overall water splitting. J. Energy Chem. 2022, 69, 292–300. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Patil, S.A.; Han, J.; Cho, S.; Inamdar, A.I.; Kim, H.; Im, H. Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: An efficient and sustainable OER anode toward industrial alkaline water-splitting. J. Mater. Chem. A 2022, 10, 8989–9000. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative strategies for electrocatalytic water splitting. ACC. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, J.; Wen, Z. Promotion for full water splitting toward vanadium-incorporated MoO2-MoNi4 hybrid nanoarrays. ACS Sustain. Chem. Eng. 2021, 9, 13225–13232. [Google Scholar] [CrossRef]
- Ali, A.; Long, F.; Shen, P.K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochem. Energy Rev. 2022, 6, 1. [Google Scholar] [CrossRef]
- Al-Naggar, A.H.; Shinde, N.M.; Kim, J.-S.; Mane, R.S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordin. Chem. Rev. 2023, 474, 214864. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.C.; Liu, X.H.; Wen, H.R. Core-shell hierarchical WO2/WO3 microsphere as an electrocatalyst support for methanol electrooxidation. Chem. Comm. 2015, 51, 15297–15299. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef]
- Diao, J.; Yuan, W.; Qiu, Y.; Cheng, L.; Guo, X. A hierarchical oxygen vacancy-rich WO3 with “nanowire-array-on-nanosheet-array” structure for highly efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 6730–6739. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Song, G.; Hong, J.; Van, T.K.; Pawar, A.U.; Kim, D.Y.; Kim, C.W.; Haider, Z.; Kang, Y.S. Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst. Growth Des. 2014, 14, 6057–6066. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, G.; Li, C.; Liu, J.; Guo, K.; Ning, H.; Shi, M.; Guo, D.; Yao, R.; Peng, J. Effects of rapid thermal annealing on wide band gap tungsten oxide films. Super. Microstruct. 2020, 142, 106541. [Google Scholar] [CrossRef]
- Johansson, M.B.; Kristiansen, P.T.; Duda, L.; Niklasson, G.A.; Osterlund, L. Band gap states in nanocrystalline WO3 thin films studied by soft X-ray spectroscopy and optical spectrophotometry. J. Phys. Condens. Matter 2016, 28, 475802. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Yang, J.; Cao, Y.F.; Kong, L.; Huang, J.F. Design principles for tungsten oxide electrocatalysts for water splitting. ChemElectroChem 2021, 8, 4427–4440. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Z.; Ke, X.; Wang, J.; Perepezko, J.; Sui, M. WO2 triggered nucleation and growth of ultra-long W18O49 structures, from nanobundles to single-crystalline microrod. Acta Mater. 2018, 148, 55–62. [Google Scholar] [CrossRef]
- Cheng, H.; Klapproth, M.; Sagaltchik, A.; Li, S.; Thomas, A. Ordered mesoporous WO2.83: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2018, 6, 2249–2256. [Google Scholar] [CrossRef]
- Lu, S.-S.; Zhang, L.-M.; Fan, K.; Xie, J.-Y.; Shang, X.; Zhang, J.-Q.; Chi, J.-Q.; Yang, X.-L.; Wang, L.; Chai, Y.-M.; et al. In situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution. Appl. Surf. Sci. 2019, 487, 945–950. [Google Scholar] [CrossRef]
- Yin, D.; Cao, Y.-D.; Chai, D.-F.; Fan, L.-L.; Gao, G.-G.; Wang, M.-L.; Liu, H.; Kang, Z. A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. Chem. Eng. J. 2022, 431, 133287–133297. [Google Scholar] [CrossRef]
- Qian, K.; Du, L.; Zhu, X.; Liang, S.; Chen, S.; Kobayashi, H.; Yan, X.; Xu, M.; Dai, Y.; Li, R. Directional oxygen activation by oxygen-vacancy-rich WO2 nanorods for superb hydrogen evolution via formaldehyde reforming. J. Mater. Chem. A 2019, 7, 14592–14601. [Google Scholar] [CrossRef]
- Zhu, K.; Shi, F.; Zhu, X.; Yang, W. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 2020, 73, 104761. [Google Scholar] [CrossRef]
- Han, H.; Nayak, A.K.; Choi, H.; Ali, G.; Kwon, J.; Choi, S.; Paik, U.; Song, T. Partial dehydration in hydrated tungsten oxide nanoplates leads to excellent and robust bifunctional oxygen reduction and hydrogen evolution reactions in acidic media. ACS Sustain. Chem. Eng. 2020, 8, 9507–9518. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.Y.; Liu, X.Y.; Cao, Y.F.; Huang, J.F.; Li, Y.S.; Liu, F. From hexagonal to monoclinic: Engineering crystalline phase to boost the intrinsic catalytic activity of tungsten oxides for the hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2021, 9, 5642–5650. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, G.; Wang, D.; Chen, Z.; Zhao, M.; Xi, G. Crystallographic phase and morphology dependent hydrothermal synthesis of tungsten oxide for robust hydrogen evolution reaction. J. Alloys Compd. 2021, 875, 160054. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Ai, X.; Chen, H.; Zou, J.; Li, G.D.; Zou, X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983–13986. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, R.; Rebekah, A.; Viswanathan, C.; Ponpandian, N. Evolution of intrinsic 1-3D WO3 nanostructures: Tailoring their phase structure and morphology for robust hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 132013–132030. [Google Scholar]
- Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, Y.; Liu, Q.; Zhang, Y.; Yu, M.; Liang, Q.; Hu, J.; Li, G. Constructing nickel sulfide heterojunctions by W-doping-induced structural transition for enhanced oxygen evolution. J. Mater. Chem. A 2022, 10, 3341–3345. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Y.; Sun, Z.; Lu, X. Ga doped Ni3S2 ultrathin nanosheet arrays supported on Ti3C2-MXene/Ni foam: An efficient and stable 3D electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 2958–2966. [Google Scholar] [CrossRef]
- Huang, H.; Xu, L.; Yoon Woo, D.; Kim, S.; Min Kim, S.; Kyeong Kim, Y.; Byeon, J.; Lee, J. Refining the surface properties of WO2.7 by vacancy engineering and transition metals doping for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2023, 451, 138939. [Google Scholar] [CrossRef]
- Hai, G.; Huang, J.; Cao, L.; Kajiyoshi, K.; Wang, L.; Feng, L. Hierarchical W18O49/NiWO4/NF heterojunction with tuned composition and charge transfer for efficient water splitting. Appl. Surf. Sci. 2021, 562, 150145. [Google Scholar] [CrossRef]
- Tariq, M.; Zaman, W.Q.; Wu, Y.Y.; Nabi, A.; Abbas, Z.; Iqbal, W.; Sun, W.; Hao, Z.; Zhou, Z.H.; Cao, L.M.; et al. Facile synthesis of IrO2 nanoparticles decorated@WO3 as mixed oxide composite for outperformed oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 31082–31093. [Google Scholar] [CrossRef]
- Sun, T.M.; Zhong, W.T.; Zhang, M.K.; Tang, Y.F.; Wang, J.; Xu, C.; Hu, L.P.; Wang, M.M. A low-cost 2D WO3/Ni3S2 heterojunction for highly stable hydrogen evolution. Mater. Chem. Front. 2021, 5, 8248–8254. [Google Scholar] [CrossRef]
- Cui, Y.L.S.; Tan, X.; Xiao, K.F.; Zhao, S.L.; Bedford, N.M.; Liu, Y.F.; Wang, Z.C.; Wu, K.H.; Pan, J.; Saputera, W.H.; et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568. [Google Scholar] [CrossRef]
- Anis, S.F.; Mostafa, A.O.; Hilal, N.; Hashaikeh, R. Nanocrystalline NiWO4-WO3-WO2.9 composite strings: Fabrication, characterization and their electrocatalytic performance for hydrogen evolution reaction. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 1264–1274. [Google Scholar] [CrossRef]
- Fominski, V.; Gnedovets, A.; Fominski, D.; Romanov, R.; Kartsev, P.; Rubinkovskaya, O.; Novikov, S. Pulsed laser deposition of nanostructured MoS3/NP-Mo//WO3−y hybrid catalyst for enhanced (photo) electrochemical hydrogen evolution. Nanomaterials 2019, 9, 1395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, B.; Wang, K.; Yang, W.; Lv, F.; Li, N.; Chao, Y.; Zhou, P.; Yang, Y.; Li, Y.; et al. WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 2021, 11, 2003192. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Liu, T.; Liu, K.; Tan, X.; Yu, X.; Zhao, Q. Oxygen vacancy-rich WO3−x/rGO composite supported Pd catalyst for efficient selective hydrogenation of nitroaromatics. J. Alloys Compd. 2023, 932, 167577. [Google Scholar] [CrossRef]
- Jiang, R.; He, C.; Guo, C.; Chen, W.; Luo, J.; Chen, Y.; Wang, L. Edge-contact geometry and anion-deficit construction for activating ultrathin MoS2 on W17O47 in the hydrogen evolution reaction. Inorg. Chem. 2019, 58, 11241–11247. [Google Scholar] [CrossRef]
- Kumar, S.; Soni, R.; Kurungot, S. PdP/WO3 multi-functional catalyst with high activity and stability for direct liquid fuel cells (DLFCs). Sustain. Energy Fuels 2021, 5, 4758–4770. [Google Scholar] [CrossRef]
- Morka, T.D.; Ujihara, M. Enhanced performance of WO3/SnO2 nanocomposite electrodes with redox-active electrolytes for supercapacitors. Int. J. Mol. Sci. 2023, 24, 6045. [Google Scholar] [CrossRef]
- Shi, J.; Tian, X.D.; Wang, H.X.; Ge, L.; Li, J.F.; Lv, B.L. Oxygen deficient sea urchin-like Cu-WO3 with high capacity and long life for anode of lithium-ion battery. Appl. Surface Sci. 2023, 618, 156627. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhou, Y.R.; Zhao, W.X.; Niu, Y.T.; Mao, Y.L.; Cheng, W. Amorphous mixed-vanadium-tungsten oxide films as optically passive ion storage materials for solid-state near-infrared electrochromic devices. ACS Appl. Mater. Interfaces 2023, 15, 7120–7128. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Zhang, H.Y.; Yin, Y.L.; Zhou, Y.L.; Yin, X.X.; Wang, T.; Zeng, J.; Wang, W.K.; Zhou, W.C.; Tang, D.S. Controlled synthesis of 3D urchinlike niobium tungsten oxide nanostructure for fast hydrogen ion storage. J. Phys. D Appl. Phys. 2023, 56, 185501. [Google Scholar] [CrossRef]
- Wu, C.; Shi, H.S.; Zhao, L.Q.; Chen, X.; Zhang, X.S.; Zhang, C.; Yu, J.M.; Lv, Y.J.; Wei, R.; Gao, T.Y.; et al. High-performance aqueous Zn2+/Al3+ electrochromic batteries based on niobium tungsten oxides. Adv. Funct. Mater. 2023, 33, 2214886. [Google Scholar] [CrossRef]
- Zou, Y.D.; Xi, S.B.; Bo, T.; Zhou, X.R.; Ma, J.H.; Yang, X.Y.; Diao, C.Z.; Deng, Y.H. Mesoporous amorphous Al2O3/crystalline WO3 heterophase hybrids for electrocatalysis and gas sensing applications. J. Mater. Chem. A 2019, 7, 21874–21883. [Google Scholar] [CrossRef]
- Mao, Y.; Wen, Y.; Chen, H.; Liao, M.; Zhang, F. Tungsten oxide flow sensor and its performance regulation. IEEE Trans. Instrum. Meas. 2022, 71, 9506608. [Google Scholar] [CrossRef]
- Juang, F.-R.; Wang, W.-Y. Ethanol gas sensors with nanocomposite of nickel oxide and tungsten oxide. IEEE Sens. J. 2021, 21, 19740–19752. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Al-Muhaish, N.A.; Al Wajih, Y.A.; Alam, M.W.; Yamani, Z.H. Surface composite and morphology tuning of tungsten oxide thin films for acetone gas sensing. Chem. Phys. Lett. 2021, 776, 138659. [Google Scholar] [CrossRef]
- Ambardekar, V.; Bhowmick, T.; Bandyopadhyay, P.P. Understanding on the hydrogen detection of plasma sprayed tin oxide/tungsten oxide (SnO2/WO3) sensor. Int. J. Hydrogen Energy 2022, 47, 15120–15131. [Google Scholar] [CrossRef]
- Mo, Y.S.; Feng, S.Q.; Yu, T.Q.; Chen, J.L.; Qian, G.F.; Luo, L.; Yin, S.B. Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction. J. Colloid Interface Sci. 2022, 607, 1928–1935. [Google Scholar] [CrossRef]
- Tang, X.X.; Liu, J.L.; Zhan, K.; Sun, H.; Zhao, B.; Yan, Y. Molybdenum-tungsten oxide nanowires rich in oxygen vacancies as an advanced electrocatalyst for hydrogen evolution. Chem. Asian J. 2020, 15, 2984–2991. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, K.Y.; Yang, J.; Zheng, Y.Y.; Hubner, R.; Ou, Z.W.; Dong, X.; He, L.Q.; Wang, H.L.; Li, J.; et al. Tungsten oxide/reduced graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution reaction. Small 2021, 17, 2102159. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.M.; He, Q.T.; Hu, Y.; Isimjan, T.T.; Hou, R.B.; Yang, X.L. Interface engineering of porous Fe2P-WO2.92 catalyst with oxygen vacancies for highly active and stable large-current oxygen evolution and overall water splitting. J. Energy Chem. 2022, 65, 574–582. [Google Scholar] [CrossRef]
- Bharagav, U.; Reddy, N.R.; Koteswararao, V.N.; Ravi, P.; Pratap, K.; Sathish, M.; Cheralathan, K.K.; Shankar, M.V.; Kumari, M.M. Heterojunction of CdS Nanocapsules-WO3 nanosheets composite as a stable and efficient photocatalyst for hydrogen evolution. Energy Fuels 2020, 34, 14598–14610. [Google Scholar] [CrossRef]
- Nevolin, V.N.; Fominski, D.V.; Romanov, R.I.; Rubinkovskaya, O.V.; Soloviev, A.A.; Shvets, P.V.; Maznitsyna, E.A.; Fominski, V.Y. Influence of sulfidation conditions of WO3 nanocrystalline film on photoelectrocatalytic activity of WS2/WO3 hybrid structure in production of hydrogen. Inorg. Mater. Appl. Res. 2021, 12, 1139–1147. [Google Scholar] [CrossRef]
- Sudha, A.; Koshy, A.M.; Swaminathan, P. Microstructure tailoring of tungsten oxide for enhanced properties by varying sintering temperatures. Mater. Lett. 2022, 316, 132007. [Google Scholar] [CrossRef]
- Šedivá, R.; Pistonesi, C.; Pronsato, M.E.; Duchoň, T.; Stetsovych, V.; Mysliveček, J.; Mašek, K. 1D tungsten oxide nanostructures on a Cu(1 1 0) surface. J. Phys. Condens. Matter 2018, 30, 465001. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, R.; Yao, L.; Ran, Y.; Zhang, X.; Wang, Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloys Compd. 2020, 820, 153194. [Google Scholar] [CrossRef]
- Chen, B.; Laverock, J.; Piper, L.F.J.; Preston, A.R.H.; Cho, S.W.; DeMasi, A.; Smith, K.E.; Scanlon, D.O.; Watson, G.W.; Egdell, R.G.; et al. The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft X-ray spectroscopy and density functional theory. J. Phys. Condens. Matter 2013, 25, 165501. [Google Scholar] [CrossRef]
- Wang, F.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B 2011, 84, 073103. [Google Scholar] [CrossRef]
- Al Mohammad, A.; Gillet, M. Phase transformations in WO3 thin films during annealing. Thin Solid Films 2002, 408, 302–309. [Google Scholar] [CrossRef]
- Hernandez-Uresti, D.B.; Sánchez-Martínez, D.; Martínez-de la Cruz, A.; Sepúlveda-Guzmán, S.; Torres-Martínez, L.M. Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceram. Int. 2014, 40, 4767–4775. [Google Scholar] [CrossRef]
- Nayak, A.K.; Verma, M.; Sohn, Y.; Deshpande, P.A.; Pradhan, D. Highly active tungsten oxide nanoplate electrocatalysts for the hydrogen evolution reaction in acidic and near neutral electrolytes. ACS Omega 2017, 2, 7039–7047. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Sahoo, S.; Younesi, R.; Gaur, A.P.S.; Katiyar, R.S.; Guinel, M.J.F. WO3 nano-ribbons: Their phase transformation from tungstite (WO3 center dot H2O) to tungsten oxide (WO3). J. Mater. Sci. 2014, 49, 5899–5909. [Google Scholar] [CrossRef]
- Sharma, L.; Kumar, P.; Halder, A. Phase and vacancy modulation in tungsten oxide: Electrochemical hydrogen evolution. ChemElectroChem 2019, 6, 3420–3428. [Google Scholar] [CrossRef]
- Hajiahmadi, Z.; Azar, Y.T. Computational study of h-WO3 surfaces as a semiconductor in water-splitting application. Surf. Interfaces 2022, 28, 101695. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Salama, T.M.; Hegazy, M.A.; Abou Shahba, R.M.; Mohamed, S.H. Synthesis of hexagonal WO3 nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 4724–4736. [Google Scholar] [CrossRef]
- Ham, D.J.; Phuruangrat, A.; Thongtem, S.; Lee, J.S. Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chem. Eng. J. 2010, 165, 365–369. [Google Scholar] [CrossRef]
- Zhou, H.W.; Shi, Y.T.; Dong, Q.S.; Lin, J.; Wang, A.Q.; Ma, T.L. Surface oxygen vacancy-dependent electrocatalytic activity of W18O49 Nanowires. J. Phys. Chem. C 2014, 118, 20100–20106. [Google Scholar] [CrossRef]
- Liang, H.F.; Cao, Z.; Xia, C.; Ming, F.W.; Zhang, W.L.; Emwas, A.H.; Cavallo, L.; Alshareef, H.N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561. [Google Scholar] [CrossRef]
- Sun, S.M.; Wu, J.; Watanabe, M.; Akbay, T.; Ishihara, T. Single-electron-trapped oxygen vacancy on ultrathin WO3 center dot 0.33H2O {100} facets suppressing backward reaction for promoted H2 evolution in pure water splitting. J. Phys. Chem. Lett. 2019, 10, 2998–3005. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Bai, J.; Duan, S.; Wang, R.; Lau, W.-M. In-situ etching synthesis of 3D self-supported serrated Ni-WO3 for oxygen evolution reaction. J. Alloys Compd. 2022, 893, 162134. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Wei, J.; Feng, P.; Yan, X.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135. [Google Scholar] [CrossRef]
- Hai, G.J.; Huang, J.F.; Cao, L.Y.; Kajiyoshi, K.; Wang, L.; Feng, L.L.; Chen, J. Activation of urchin-like Ni-doped W18O49/NF by electrochemical tuning for efficient water splitting. J. Energy Chem. 2021, 63, 642–650. [Google Scholar] [CrossRef]
- Zheng, T.T.; Sang, W.; He, Z.H.; Wei, Q.S.; Chen, B.W.; Li, H.L.; Cao, C.; Huang, R.J.; Yan, X.P.; Pan, B.C.; et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017, 17, 7968–7973. [Google Scholar] [CrossRef]
- Chen, J.D.; Yu, D.N.; Liao, W.S.; Zheng, M.D.; Xiao, L.F.; Zhu, H.; Zhang, M.; Du, M.L.; Yao, J.M. WO3−x nanoplates grown on carbon nanofibers for an efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, P.F.; Pan, L.F.; Wang, H.F.; Yang, Z.Z.; Zheng, L.R.; Hu, P.; Zhao, H.J.; Gu, L.; Yang, H.G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064. [Google Scholar] [CrossRef]
- Li, D.X.; Xu, Y.; Lu, Y.L.; Chen, Y.Y.; Wu, Y.Y.; Yan, J.; Du, F.K.; Zhao, Y.Z.; Tan, X.C. Defect-rich engineering of Ni-incorporated tungsten oxides micro-flowers on carbon cloth: A binder-free electrode for highly efficient hydrogen evolution reaction. J. Power Sources 2022, 520, 230862–230870. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pradhan, D. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance. J. Phys. Chem. C 2018, 122, 3183–3193. [Google Scholar] [CrossRef]
- Xie, X.; Mu, W.J.; Li, X.L.; Wei, H.Y.; Jian, Y.; Yu, Q.H.; Zhang, R.; Lv, K.; Tang, H.; Luo, S.Z. Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction. Electrochim. Acta 2014, 134, 201–208. [Google Scholar] [CrossRef]
- Li, P.; Duan, X.; Kuang, Y.; Sun, X. Iridium in tungsten trioxide matrix as an efficient bi-functional electrocatalyst for overall water splitting in acidic media. Small 2021, 17, e2102078. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, C.; Huang, Q.; Huang, Z.; Zhang, C. Self-supported tungsten/tungsten dioxide nanowires array as an efficient electrocatalyst in hydrogen evolution reaction. RSC Adv. 2016, 6, 89815–89820. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Viswanathan, C.; Ponpandian, N. Sm3+ rare-earth doping in non-noble metal oxide-WO3 grown on carbon cloth fibre as a bifunctional electrocatalyst for high-performance water electrolysis. Sustain. Energy Fuels 2021, 5, 5851–5865. [Google Scholar] [CrossRef]
- Ma, J.W.; Ma, Z.R.; Liu, B.B.; Wang, S.; Ma, R.X.; Wang, C.Y. Composition of Ag-WO3 core-shell nanostructures as efficient electrocatalysts for hydrogen evolution reaction. J. Solid State Chem. 2019, 271, 246–252. [Google Scholar] [CrossRef]
- Wang, D.L.; Li, H.P.; Du, N.; Hou, W.G. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009770. [Google Scholar] [CrossRef]
- Liu, J.C.; Tang, C.Y.; Ke, Z.J.; Chen, R.; Wang, H.B.; Li, W.Q.; Jiang, C.Z.; He, D.; Wang, G.M.; Xiao, X.H. Optimizing hydrogen adsorption by d-d orbital modulation for efficient hydrogen evolution catalysis. Adv. Energy Mater. 2022, 12, 2103301. [Google Scholar] [CrossRef]
- Sun, X.; Yang, F.; Liu, Z.; Zeng, L.; Cui, X. Fabrication of Fe and P Co-doped WO2 nano-polygonal pyramid as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Lett. 2019, 48, 1232–1235. [Google Scholar] [CrossRef]
- Yue, X.; Zheng, Y.; Chen, Y.; Huang, S. Overall water splitting on Ni0.19WO4 nanowires as highly efficient and durable bifunctional non-precious metal electrocatalysts. Electrochim. Acta 2020, 333, 135554. [Google Scholar] [CrossRef]
- Jiang, D.L.; Xu, S.J.; Gao, M.H.; Lu, Y.K.; Liu, Y.; Sun, S.C.; Di, L. Synergistically integrating nickel porous nanosheets with 5d transition metal oxides enabling efficient electrocatalytic overall water splitting. Inorg. Chem. 2021, 60, 8189–8199. [Google Scholar] [CrossRef]
- Peng, C.L.; Zhao, W.P.; Kuang, Z.Y.; Miller, J.T.; Chen, H.R. Boosting neutral hydrogen evolution reaction on iridium by support effect of W18O49. Appl. Catal. A-Gen. 2021, 623, 9. [Google Scholar] [CrossRef]
- Wang, C.Z.; Wang, R.; Peng, Y.; Chen, J.N.; Li, J.H. Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. Chem. Comm. 2019, 55, 10944–10947. [Google Scholar] [CrossRef]
- Xi, Z.; Mendoza-Garcia, A.; Zhu, H.Y.; Chi, M.F.; Su, D.; Erdosy, D.P.; Li, J.R.; Sun, S.H. NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy Environ. 2017, 2, 119–123. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, H.E.; Cho, A.; Kim, S.; Ye, Y.; Han, J.W.; Lee, H.; Jang, J.H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 16038–16042. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Su, L.; Yu, X.; Wang, R.; Cui, X.; Tian, H.; Cao, S.; Xia, B.Y.; Shi, J. Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Appl. Catal. B—Environ. 2022, 308, 121229. [Google Scholar] [CrossRef]
- Ren, Y.M.; Chen, Z.H.; Yu, X.R. Ultrathin, porous and oxygen vacancies-enriched Ag/WO3−x heterostructures for electrocatalytic hydrogen evolution. Chem.-Asian J. 2019, 14, 4315–4321. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.-G. Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 5778–5786. [Google Scholar] [CrossRef]
- Hu, W.; Tian, M.; Zeng, K.; Yan, J.; Zhou, J.; Zhang, J.; Rummeli, M.H.; Wang, H.; Yang, R. Tuning the electronic structure of W18O49 via dual doping for efficient oxygen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 3208–3216. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, Q.; Yang, P.; He, B. Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution. Chem. Comm. 2017, 53, 4323–4326. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Tang, Q.W.; He, B.L.; Yang, P.Z. Mo incorporated W18O49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. Int. J. Hydrogen Energy 2017, 42, 14534–14546. [Google Scholar] [CrossRef]
- Nakayama, M.; Takeda, A.; Maruyama, H.; Kumbhar, V.; Crosnier, O. Cobalt-substituted iron-based wolframite synthesized via polyol route for efficient oxygen evolution reaction. Electrochem. Commun. 2020, 120, 106834–106840. [Google Scholar] [CrossRef]
- Tian, H.; Cui, X.Z.; Zeng, L.M.; Su, L.; Song, Y.L.; Shi, J.L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293. [Google Scholar] [CrossRef]
- Shu, C.; Kang, S.; Jin, Y.S.; Yue, X.; Shen, P.K. Bifunctional porous non-precious metal WO2 hexahedral networks as an electrocatalyst for full water splitting. J. Mater. Chem. A 2017, 5, 9655–9660. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594–6599. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Y.; Bao, X.; Mao, S.; Fan, R.; Wang, Y. In situ formed bimetallic carbide Ni6Mo6C nanodots and NiMoOx nanosheet array hybrids anchored on carbon cloth: Efficient and flexible self-supported catalysts for hydrogen evolution. ACS Catal. 2020, 10, 11634–11642. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, J.; Ran, J.; Xi, P.; Yang, L.; Gao, D. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 2020, 10, 12376–12384. [Google Scholar] [CrossRef]
- Duan, Y.; Yu, Z.Y.; Hu, S.J.; Zheng, X.S.; Zhang, C.T.; Ding, H.H.; Hu, B.C.; Fu, Q.Q.; Yu, Z.L.; Zheng, X.; et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. 2019, 58, 15772–15777. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Wu, L.; Lin, Y.; Yuan, X.; Zhao, J.; Yan, W.; Zhou, S.; Shi, L. The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: Are more better? Chem. Comm. 2019, 55, 1442–1445. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; Gao, L.; Ma, X.; Zhao, M.; Zhou, J.; Kuang, X.; Deng, W.; Sun, X.; Wei, Q. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. J. Mater. Chem. A 2019, 7, 21704–21710. [Google Scholar] [CrossRef]
- Cai, Z.; Bi, Y.; Hu, E.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.; Kuang, Y.; Li, Y.; Yang, X.-Q.; et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694. [Google Scholar] [CrossRef]
- Qiao, D.; Wang, Y.; Li, F.; Wang, D.Y.; Yan, B.J. Kinetic study on preparation of substoichiometric tungsten oxide WO2.72 via hydrogen reduction process. J. Therm. Anal. Calorim. 2019, 137, 389–397. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.L.; Liu, C.-j. Catalyst preparation with plasmas: How does it work? ACS Catal. 2018, 8, 2093–2110. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. 2016, 128, 5363–5367. [Google Scholar] [CrossRef]
- Anis, S.F.; Lalia, B.S.; Mostafa, A.O.; Hashaikeh, R. Electrospun nickel-tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J. Mater. Sci. 2017, 52, 7269–7281. [Google Scholar] [CrossRef]
- Lu, K.; Wang, Z.; Wu, Y.; Zhai, X.; Wang, C.; Li, J.; Wang, Z.; Li, X.; He, Y.; An, T.; et al. Synergistic effect of F doping and WO3 loading on electrocatalytic oxygen evolution. Chem. Eng. J. 2023, 451, 138590. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.; He, G.; Chen, H. Race on engineering noble metal single-atom electrocatalysts for water splitting. Int. J. Hydrogen Energy 2022, 47, 14257–14279. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Kim, T.; Jung, S.; Yoon, H.J.; Lee, K. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction. Small 2022, 18, 2105680. [Google Scholar] [CrossRef]
- Li, J.C.; Zhang, C.; Zhang, C.; Ma, H.J.; Yang, Y.; Guo, Z.Q.; Wang, Y.Y.; Ma, H.X. Electronic configuration of single ruthenium atom immobilized in urchin-like tungsten trioxide towards hydrazine oxidation-assisted hydrogen evolution under wide pH media. Chem. Eng. J. 2022, 430, 132953–132965. [Google Scholar] [CrossRef]
- Xu, W.; Ni, X.M.; Zhang, L.J.; Yang, F.; Peng, Z.; Huang, Y.F.; Liu, Z. Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem 2022, 9, e202101300. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Y.Z.; Wang, Y.; Zhang, Z.L.; Liu, J.; Wu, T.; Qin, W.J.; Liu, S.J.; Jia, B.R.; Wu, H.Y.; et al. Single-atom Co doped in ultrathin WO3 arrays for the enhanced hydrogen evolution reaction in a wide pH range. ACS Appl. Mater. Interfaces 2021, 13, 53915–53924. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Ngo, Y.-L.T.; Bhamu, K.C.; Voronova, A.; Jana, J.; Kang, S.G.; Chung, J.S.; Choi, W.M.; Jang, J.H.; Hur, S.H.; Seo, B. Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide-oxide heterostructure. Chem. Eng. J. 2022, 450, 137915. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, X.B.; Xiong, S.J.; Wu, X.L.; Shan, Y.; Chu, P.K. Synergistic WO3 center dot 2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 13966–13972. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhang, J.F.; Shi, Y.M.; Liu, D.; Zhang, B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Ahmed, A.A.; Pawar, S.M.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S. Enhanced water splitting performance of biomass activated carbon-anchored WO3 nanoflakes. Appl. Surf. Sci. 2020, 508, 145127. [Google Scholar] [CrossRef]
- Hu, G.J.; Li, J.; Liu, P.; Zhu, X.Q.; Li, X.F.; Ali, R.N.; Xiang, B. Enhanced electrocatalytic activity of WO3@NPRGO composite in a hydrogen evolution reaction. Appl. Surf. Sci. 2019, 463, 275–282. [Google Scholar] [CrossRef]
- Peng, X.; Nie, X.; Zhang, L.; Liang, T.; Liu, Y.; Liu, P.; Men, Y.L.; Niu, L.; Zhou, J.; Cui, D.; et al. Carbon-coated tungsten oxide nanospheres triggering flexible electron transfer for efficient electrocatalytic oxidation of water and glucose. ACS Appl. Mater. Interfaces 2020, 12, 56943–56953. [Google Scholar] [CrossRef]
- Wondimu, T.H.; Chen, G.C.; Chen, H.Y.; Kabtamu, D.M.; Bayeh, A.W.; Wang, K.C.; Huang, H.C.; Wang, C.H. High catalytic activity of oxygen-vacancy-rich tungsten oxide nanowires supported by nitrogendoped reduced graphene oxide for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 19767–19774. [Google Scholar] [CrossRef]
- Liu, C.H.; Qiu, Y.Y.; Xia, Y.J.; Wang, F.; Liu, X.C.; Sun, X.H.; Liang, Q.; Chen, Z.D. Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution. Nanotechnology 2017, 28, 445403. [Google Scholar] [CrossRef]
- Anupama, V.R.; Mideen, A.S.; Shibli, S.M.A. Tuning of electrocatalytic activity of WO3-TiO2 nanocomposite electrode for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 15145–15160. [Google Scholar] [CrossRef]
- Shang, X.; Rao, Y.; Lu, S.S.; Dong, B.; Zhang, L.M.; Liu, X.H.; Li, X.; Liu, Y.R.; Chai, Y.M.; Liu, C.G. Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2017, 197, 123–128. [Google Scholar] [CrossRef]
- Han, C.; Wang, D.; Li, Q.; Xing, Z.; Yang, X. Ni17W3 nanoparticles decorated WO2 nanohybrid electrocatalyst for highly efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 2409–2413. [Google Scholar] [CrossRef]
- Wang, B.Z.; Wang, L.X.; Qian, Y.T.; Yang, Y.T.; Isimjan, T.T.; Yang, X.L. Construction of a self-supporting Ni2P-WO3 heterostructure for highly efficient hydrogen evolution under both caustic and acidic conditions. Sustain. Energy Fuels 2021, 5, 2884–2892. [Google Scholar] [CrossRef]
- Xu, W.; Wang, B.B.; Ni, X.M.; Liu, H.Y.; Wang, W.; Zhang, L.J.; Zhang, H.; Peng, Z.; Liu, Z. Heterogeneous synergetic effect of metal-oxide interfaces for efficient hydrogen evolution in alkaline solutions. ACS Appl. Mater. Interfaces 2021, 13, 13838–13847. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Wang, C.W. In situ wet etching of MoS2@dWO3 Heterostructure as ultra-stable highly active electrocatalyst for hydrogen evolution reaction. Catalysts 2020, 10, 977. [Google Scholar] [CrossRef]
- Lv, C.; Yan, G.; Wang, X.; Gao, L.; Xu, S.; San, X.; Wang, S.; Li, Y.; Huang, Z. Ni loaded on N-doped carbon encapsulated tungsten oxide nanowires as an alkaline-stable electrocatalyst for water reduction. Sustain. Energy Fuels 2020, 4, 788–796. [Google Scholar] [CrossRef]
- Wang, X.; Gan, X.; Hu, T.; Fujisawa, K.; Lei, Y.; Lin, Z.; Xu, B.; Huang, Z.H.; Kang, F.; Terrones, M.; et al. Noble-metal-free hybrid membranes for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1603617. [Google Scholar] [CrossRef]
- Gong, F.L.; Yao, C.J.; Kong, H.J.; Meng, E.C.; Gong, L.H.; Zhang, Y.H.; Li, F. WO3/C nanoarchitectures assembled with 1D nanowires: The synthesis, Pt nanoparticles decoration, and highly enhanced hydrogen evolution in neutral media. J. Phys. Chem. Solids 2022, 163, 110542. [Google Scholar] [CrossRef]
- Jiang, X.L.; Jang, H.S.; Liu, S.G.; Li, Z.J.; Kim, M.G.; Li, C.; Qin, Q.; Liu, X.; Cho, J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 4110–4116. [Google Scholar] [CrossRef]
- Jiang, W.J.; Chen, J.L.; Qian, G.F.; He, H.B.; Zhang, H.; Zhuo, X.Y.; Shen, F.; Luo, L.; Yin, S.B. Interfacial electronic engineering of carbon encapsulated Co5.47N-WO2 for boosting overall water splitting. Electrochim. Acta 2021, 390, 138887. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Y.; Liu, Y.K.; Chen, Z.; Zhang, M. CoSe2/WSe2/WO3 hybrid nanowires on carbon cloth for efficient hydrogen evolution reaction. J. Alloys Compd. 2018, 768, 889–895. [Google Scholar] [CrossRef]
- Yang, Y.T.; Shao, X.; Zhou, S.Q.; Yan, P.X.; Isimjan, T.T.; Yang, X.L. Interfacial electronic coupling of NC@WO3-W2C decorated Ru clusters as a reversible catalyst toward electrocatalytic hydrogen oxidation and evolution reactions. ChemSusChem 2021, 14, 2992–3000. [Google Scholar] [CrossRef]
- Chen, Y.T.; Ren, R.; Wen, Z.H.; Ci, S.Q.; Chang, J.B.; Mao, S.; Chen, J.H. Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungstendisulfide/tungsten trioxide ternary nanohybrids. Nano Energy 2018, 47, 66–73. [Google Scholar] [CrossRef]
- Yang, N.N.; Chen, Z.G.; Ding, D.; Zhu, C.F.; Gan, X.X.; Cui, Y. Tungsten-nickel alloy boosts alkaline hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 27185–27191. [Google Scholar] [CrossRef]
- Peng, Y.W.; Shan, C.; Wang, H.J.; Hong, L.Y.; Yao, S.; Wu, R.J.; Zhang, Z.M.; Lu, T.B. Polyoxometalate-derived ultrasmall Pt2W/WO3 heterostructure outperforms platinum for large-current-density H2 evolution. Adv. Energy Mater. 2019, 9, 1900597. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, Y.; Roh, H.; Lim, C.; Yong, K. Biomimetic 2D-Ni(Co,Fe)P/1D-WOx nanocoral reef electrocatalysts for efficient water splitting. J. Mater. Chem. A 2021, 9, 10909–10920. [Google Scholar] [CrossRef]
- Noh, S.; Le, T.H.; Jo, H.; Kim, S.; Yoon, H. Ternary nanohybrids comprising N-doped graphene and WSe2-WO3 nanosheets enable high-mass-loading electrodes with long-term stability for hydrogen evolution. ACS Appl. Nano Mater. 2021, 4, 14094–14104. [Google Scholar] [CrossRef]
- Liu, J.C.; Qian, G.F.; Zhang, H.; Chen, J.L.; Wang, Y.J.; He, H.B.; Luo, L.; Yin, S.B. Amorphous FeOOH coating stabilizes WO2-NaxWO3 for accelerating oxygen evolution reaction. Chem. Eng. J. 2021, 426, 131253. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Bai, J.; Duan, S.; Wang, R.; Lau, W.-M. Fe ion-chelated tannic acid layer coordinates the electronic structure of Ni-WOx to enhance oxygen evolution performance. J. Alloys Compd. 2022, 928, 167225. [Google Scholar] [CrossRef]
- Wondimu, T.H.; Chen, G.C.; Kabtamu, D.M.; Chen, H.Y.; Bayeh, A.W.; Huang, H.C.; Wang, C.H. Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 6481–6490. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, J.; Li, C.; Han, C.; Shan, Y.; He, J.; Jia, J.; Wu, W.; Yang, G. Electrospun SiO2/WO3/NiWO4 decorated carbon nanofibers for an efficient electrocatalytic hydrogen evolution. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 506–513. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Do, H.H.; Tekalgne, M.; Le, Q.V.; Nguyen, T.P.; Hong, S.H.; Cho, J.H.; Dao, D.V.; Ahn, S.H.; Kim, S.Y. WS2-WC-WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction. Nano Converg. 2021, 8, 28. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, J.G.; Wu, Y.Z.; Cao, S.Y.; Li, Z.W.; Nie, X.W.; Gao, Z.M.; Sun, L.C. Tailoring active sites in mesoporous defect-rich NC/Vo-WON heterostructure array for superior electrocatalytic hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803693–1803702. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, B.; Jing, H.; Gao, H.; He, B.; Xia, X.; Lei, W.; Hao, Q. Porous carbon framework decorated with carbon nanotubes encapsulating cobalt phosphide for efficient overall water splitting. J. Colloid Interface Sci. 2023, 629, 22–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Yan, B.; Zhang, F.; Shi, Y.; Guo, X. Regeneration of textile sludge into Cu8S5 decorated N, S self-doped interconnected porous carbon as an advanced bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2023, 451, 138497. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, R.; Shen, D.; Liu, Q.; Hong Luo, K.; Wu, C.; Gu, S. Performance of intrinsic heteroatoms in cobalt phosphide loaded ginkgo leave-based carbon material on promoting the electrocatalytic activity during hydrogen evolution reaction and oxygen evolution reaction. Fuel 2023, 333, 126368. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Zhou, H.; Liu, B.; Dong, H.; Lin, X.; Qin, Y. Lignin-derived carbon-supported MoC-FeNi heterostructure as efficient electrocatalysts for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 629, 822–831. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H.; Sang, X.; Su, Z.; Li, D.; Wang, Q. Oxygen vacancy rich tungsten oxide with nitrogen doped mesoporous carbon as matrix for overall water splitting and 4-nitrophenol reductive removal. Solid State Sci. 2018, 83, 23–30. [Google Scholar] [CrossRef]
- Jing, S.; Lu, J.; Yu, G.; Yin, S.; Luo, L.; Zhang, Z.; Ma, Y.; Chen, W.; Shen, P.K. Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Adv. Mater. 2018, 30, e1705979. [Google Scholar] [CrossRef]
- Lu, J.J.; Qian, G.F.; Luo, L.; He, H.B.; Yin, S.B. Contributions of oxygen vacancies to the hydrogen evolution catalytic activity of tungsten oxides. Int. J. Hydrogen Energy 2021, 46, 676–682. [Google Scholar] [CrossRef]
Electrocatalyst | Synthesis Method | Electrolyte | Application | Scanning Speed (mV s−1) | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|---|---|
Monoclinic WO3·2H2O | Wet-chemical route | 0.5 M H2SO4 | HER | 5 | 117 | 66.5 | [40] |
Orthorhombic WO3·H2O | 209 | 198 | |||||
Orthorhombic WO3·0.33H2O | 276 | 376.5 | |||||
Hexagonal-WO3 | Hydrothermal method | 0.5 M H2SO4 | HER | 2 | 83 | 48 | [42] |
Monoclinic-WO3 | 106 | 78 | |||||
m-WO3 | Hydrothermal method, thermal treatment | 0.5 M H2SO4 | HER | 5 | 168 | 83 | [41] |
h-WO3 | 257 | 157 | |||||
Monoclinic WO3 | In ethanol and kept under ambient temperature, thermal treatment | 0.5 M H2SO4 | HER | 1 | 73 | 39.5 | [82] |
Orthorhombic WO3·H2O | 147 | 43.9 |
Electrocatalyst | Synthesis Method | Electrolyte | Application | Scanning Speed (mV s−1) | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|---|---|
WO3−r | Liquid exfoliation | 0.5 M H2SO4 | HER | 2 | 38 | 38 | [94] |
WO3−x | Electrospinning | 0.5 M H2SO4 | HER | 5 | 185 | 89 | [95] |
Meso-WO2.83 | H2 reduction | 0.5 M H2SO4 | HER | 5 | 287 | 95 | [35] |
WO2.9 | Wet grinding method, thermally treated | 0.5 M H2SO4 | HER | 5 | 70 | 50 | [96] |
Oxygen vacancies-rich tungsten oxides | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 25 | 49.25 | [97] |
W18O49 | Microwave–solvothermal treatment | 0.5 M H2SO4 | HER | 5 | 54 | 30 | [98] |
0.1 M Na2SO4 | ~200 | 80 | |||||
Ta-doped WO3 | Hydrothermal method | 1 M H2SO4 | HER | 2 | 480 | 65 | [99] |
Ir-doped WO3 | Hydrothermal method, thermal treatment | 0.5 M H2SO4 | OER | 1 | 258 | 48.9 | [100] |
HER | 36 | 92 | |||||
OWS | 1.56 | - | |||||
W/WO2 | Hydrothermal method, thermal treatment | 0.5 M H2SO4 | HER | 5 | 297 | 74.5 | [101] |
4% Sm doped WO3 | Hydrothermal method | 0.5 M H2SO4 | HER | 5 | 54 | 74.5 | [102] |
5% Sm doped WO3 | OER | 90 | 138 | ||||
4% Sm doped WO3 ||5% Sm doped WO3 | OWS | 1.6 V | - | ||||
Ag-WO3 | Sonochemical method | 0.5 M H2SO4 | HER | 2 | 207 | 52.4 | [103] |
Pt-SA/ML-WO3 | Space confined strategy, thermal treatment | 0.5 M H2SO4 | HER | 2 | 22 | 27 | [104] |
Ni-WO2/CP | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 83 | 79 | [105] |
Ni-WO2/NF | 41 | 47 | |||||
Fe-P/WO2 | Organic–inorganic hybridization method | 0.5 M H2SO4 | HER | 5 | 48 | 47 | [106] |
Ni0.19WO4 | Hydrothermal method, thermal treatment | 1 M KOH | OER | 240 | 47 | [107] | |
HER | 200 | 78 | |||||
OWS | 1.59 V | - | |||||
Co-WO2.7−x | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 59 | 86 | [48] |
Ni/WOx | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 42 | 57.9 | [108] |
OER | 395.7@100 mA cm−2 | 100 | |||||
OWS | 1.52 | - | |||||
Ni-doped W18O49 | Hydrothermal method, thermal treatment | 1 M KOH | HER | 2 | 90 | 92 | [93] |
OER | 240@20 mA cm−2 | 106 | |||||
OWS | 1.56 V | - | |||||
10 wt% Ir/W18O49 nanowire | Solvothermalsonication and dispersion, thermal treatment | 0.5 M H2SO4 | HER | 5 | 41 | 38 | [109] |
1 M PBS | 83 | 66 | |||||
Fe-WOx | Hydrothermal | 1 M KOH | OER | - | 380 | 51.7 | [110] |
Ni0.78WO2.72 | Wet chemical,thermal treatment | 0.1 M KOH | OER | 10 | 270 | - | [111] |
Pt SA/WO3−x | Incipient wetness impregnation method | 0.5 M H2SO4 | HER | 5 | 47 | 45 | [112] |
Ru-WO2.72 | Hydrothermal method, self reduction | 0.5 M H2SO4 | HER | 5 | 40 | 50 | [113] |
Ag/WO3−x | Situ reduction method | 0.5 M H2SO4 | HER | 5 | 30 | 40 | [114] |
Mo-W18O49 | Hydrothermal method | 0.5 M H2SO4 | HER | 5 | 45 | 54 | [115] |
NiFe-W18O49 | Hydrothermal method | 0.1 M KOH | OER | 5 | 325 | 42 | [116] |
5 at% Pd doped W18O49 | Solvothermal method | 0.5 M H2SO4 | HER | 1 | 137 | 35 | [117] |
1 at% Mo incorporated W18O49 nanofibers | Solvothermal method | 0.5 M H2SO4 | HER | 1 | 262 | 49 | [118] |
Co0.5Fe0.5WO4 | A polyol route | 1 M KOH | OER | 1 | 360 | 36.3 | [119] |
Pt/def-WO3 | Hydrothermal method and deposition–precipitation method | 0.5 M H2SO4 | HER | 1 | 42 | 61 | [120] |
Electrocatalyst | Synthesis Method | Electrolyte | Application | Scanning Speed (mV s−1) | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|---|---|
WO2-C nanowires | Calcination | 0.5 M H2SO4 | HER | 2 | 58 | 46 | [142] |
WO3 nanoflakes/B-AC | Sonochemical method | 1 M KOH | OER | 1 | 320 | 48 | [143] |
HER | 360 | 14 | |||||
WO3@NPRGO | Redox reaction and carbonization | 0.5 M H2SO4 | HER | 5 | 225 | 87 | [144] |
Carbon-based shell coated tungsten oxide nanospheres | Hydrothermal method, thermal treatment | 1 M NaOH | OER | 5 | 317@50 mA cm−2 | 70 | [145] |
WOx NWs/N-rGO | Hydrothermal method, thermal treatment | 0.5 M H2SO4 | HER | 2 | 40 | 38.2 | [146] |
WOx/C nanowires | Thermal treatment | 0.5 M H2SO4 | HER | 2 | 108 | 46 | [147] |
Urchin-like CC@WO3/Ru SA-450 | Hydrothermal–calcining–galvanostatic deposition | 0.5 M H2SO4 | HER | 2 | 17 | 54.7 | [136] |
1 M KOH | 34 | 57.5 | |||||
1 M PBS | 64 | 91.9 | |||||
NiWO4/WO3 fibers | Electrospinning schematic | 0.5 M H2SO4 | HER | 1 mA/cm2 | 80 | 50.27 | [132] |
0.1 M KOH | 60 | 41.97 | |||||
IrO2/WO3 | Wet-chemical route | 0.1 M HClO4 | OER | 10 | - | 65 | [50] |
WO3-TiO2 particles | Acid catalyzed peptization method | 32% of NaOH | HER | - | 120 | 98 | [148] |
WS2/WO3 nanosheets | Hydrothermal method | 0.5 M H2SO4 | HER | 2 | 395 | 50 | [149] |
WO3/Ni3S2 | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 249@100 mA cm−2 | 45.06 | [51] |
Ni17W3/WO2 nanoparticles | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 35 | 41.6 | [150] |
W18O49/NiWO4 | Hydrothermal method, thermal treatment | 1 M KOH | OER | 2 | 250@20 mA cm−2 | 85 | [49] |
HER | 147@20 mA cm−2 | 101 | |||||
WO3·2H2O/WS2 | Anodic treatment | 0.5 M H2SO4 | HER | 2 | 152@100 mA cm−2 | 54 | [141] |
Ni2P-WO3 | Electrodeposition process, phosphating treatment | 0.5 M H2SO4 | HER | 0.5 | 107 | 55.9 | [151] |
1 M KOH | 105 | 64.2 | |||||
a-WOx/WC | Carburization process | 0.5 M H2SO4 | HER | 5 | 233@20 mA cm−2 | 69 | [52] |
0.1 M PB | 292@20 mA cm−2 | 82 | |||||
R-Ni17W3/WO2 | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 48 | 33 | [152] |
W17O47-MoS2 | Wet chemical, thermal treatment | 0.5 M H2SO4 | HER | 10 | 145 | 41 | [57] |
WO2@C3N4 | Hydrogen thermal process and calcination | 0.5 M H2SO4 | HER | 5 | 98 | 94.4 | [36] |
MoS2@dWO3 | In situ wet etching | 0.5 M H2SO4 | HER | 2 | 191 | 42 | [153] |
Fe2P-WO2.92 | Hydrothermal method, thermal treatment | 1 M KOH | OER | 0.2 | 215 | 46.3 | [72] |
Ov-WOx@NC-Ni | Precursor growth and pyrolysis reaction | 1 M KOH | HER | 5 | 67@20 mA cm−2 | 62 | [154] |
WS2/WOx/C | Spin-coated and thermal treatment | 0.5 M H2SO4 | HER | 5 | 120 | 36 | [155] |
Pt@WO3/C | Microemulsion method and annealing treatment | 1 M PBS | HER | 5 | 149 | 150 | [156] |
Ru2P/WO3/NPC | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 15 | 18 | [157] |
(Co5.47N-CO2)@C | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 36 | 68 | [158] |
OER | 270 | 60 | |||||
OWS | 1.54 | - | |||||
WO3@F-GS | Plasma-induced assembly method | 1 M KOH | OER | 5 | 298 | 77.6 | [133] |
CoSe2/WSe2/WO3 NWs | Hydrothermal method, thermal treatment | 1 M KOH | HER | 5 | 115 | 121 | [159] |
Ru/N-doped Carbon@WO3-W2C | Co-precipitation method and polyol reduction method | 1 M KOH | HER | - | 31 | 40.5 | [160] |
NiWO4-WO3-WO2.9 | Electrospinning method, thermal treatment | 0.5 M H2SO4 | HER | 2 | 40 | 69 | [53] |
0.1 M KOH | 50 | 45 | |||||
rGO/WS2/WO3 | One-step aerosolization | 0.5 M H2SO4 | HER | - | 113 | 37 | [161] |
WNi4@W-WO2 | Hydrothermal method, thermal treatment | 1 M KOH | HER | - | 83 | 83 | [162] |
Pt2W/WO3/RGO | Co-deposition | 0.5 M H2SO4 | HER | 5 | 394@500 mA cm−2 | 36.8 | [163] |
2D-Ni(Co,Fe)P/1D-WOx | Thermal evaporation– electrodeposition–thermal treatment | 1 M KOH | HER | 2 | 49 | 108 | [164] |
OER | 270 | 351 | |||||
OWS | 1.51 V | - | |||||
N-doped graphene/WSe2-WO3 | Liquid-phase physical co-exfoliation and heat treatment | 0.5 M H2SO4 | HER | 5 | 257 | 101.9 | [165] |
WO2-NaxWO3@FeOOH/NF | Hydrothermal method, thermal treatment, FeOOH coating | 1 M KOH | OER | 1 | 220@20 mA cm−2 | 42.2 | [166] |
TA-Fe@Ni-WOx | Hydrothermal method, thermal treatment-FeOOH coating | 1 M KOH | HER | 2 | 240@20 mA cm−2 | 63.37 | [167] |
Fe-WOxP/rGO | Hydrothermal, CVD method | 0.5 M H2SO4 | HER | 2 | 54.6 | 41.99 | [168] |
WO(3−x)-WCy/CDs | Hydrothermal method | 0.5 M H2SO4 | HER | 5 | 65 | 50 | [140] |
SiO2/WO3/NiWO4 | Electrospinning method, carbonization process | 0.5 M H2SO4 | HER | 2 | 320 | 48 | [169] |
Pt-WO3/rGO aerogel | Solvothermal method, electrodeposition | 0.5 M H2SO4 | HER | 5 | 42 | 30 | [71] |
WS2-WC-WO3 NHs | Hydrothermal method | 0.5 M H2SO4 | HER | 5 | 352 | 59 | [170] |
NC/Vo-WON | Hydrothermal and hydrogenation/nitridation-induced strategy | 1 M KOH | HER | 2 | 16 | 33 | [171] |
WOx-PtNi@Pt DNWs | Wet–chemical method | 0.1 M KOH | HER | 10 | 24 | - | [55] |
0.1 M HClO4 | 5 | ||||||
0.5 M PBS | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, R.; Duan, S. Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting. Nanomaterials 2023, 13, 1727. https://doi.org/10.3390/nano13111727
Wang Y, Wang R, Duan S. Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting. Nanomaterials. 2023; 13(11):1727. https://doi.org/10.3390/nano13111727
Chicago/Turabian StyleWang, Yange, Rongming Wang, and Sibin Duan. 2023. "Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting" Nanomaterials 13, no. 11: 1727. https://doi.org/10.3390/nano13111727
APA StyleWang, Y., Wang, R., & Duan, S. (2023). Optimization Methods of Tungsten Oxide-Based Nanostructures as Electrocatalysts for Water Splitting. Nanomaterials, 13(11), 1727. https://doi.org/10.3390/nano13111727