Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Preparation of Mint Extract
2.3. Preparation of Fe-Zn-PVA NCs
2.4. pH at Point of Zero Charge (pHpzc)
2.5. Ultrasonic-Assisted Adsorption Process
2.6. Central Composite Design (CCD)
2.7. Adsorption Kinetics, Isotherms, and Thermodynamics Studies
2.8. Surface Regeneration of Fe-Zn-PVA NCs
3. Results and Discussion
3.1. Characterization of Fe-Zn-PVA NCs
3.2. Determination of Surface Neutrality by pHpzc of Fe-Zn-PVA NCs
3.3. Design of Experiments
Source of Variation | Df a | SS b | MS c | F-Value | p-Value |
---|---|---|---|---|---|
Model | 14 | 3065 | 218.9 | 46.33 | <0.0001 |
A | 1 | 155.1 | 155.1 | 32.83 | <0.0001 |
B | 1 | 2368 | 2368 | 501.1 | <0.0001 |
C | 1 | 70.32 | 70.32 | 14.88 | 0.0016 |
D | 1 | 48.56 | 48.56 | 10.28 | 0.0059 |
AB | 1 | 2.45 | 2.45 | 0.5183 | 0.4826 |
AC | 1 | 0.18 | 0.1806 | 0.0382 | 0.8476 |
AD | 1 | 5.24 | 5.24 | 1.110 | 0.3088 |
BC | 1 | 5.11 | 5.11 | 1.080 | 0.3150 |
BD | 1 | 44.82 | 44.82 | 9.490 | 0.0076 |
CD | 1 | 3.330 | 3.330 | 0.7048 | 0.4143 |
A² | 1 | 129.8 | 129.8 | 27.48 | <0.0001 |
B² | 1 | 49.93 | 49.93 | 10.57 | 0.0054 |
C² | 1 | 22.92 | 22.92 | 4.850 | 0.0437 |
D² | 1 | 120.6 | 120.6 | 25.52 | 0.0001 |
Residual | 15 | 70.88 | 4.730 | ||
Lack of Fit | 10 | 61.53 | 6.150 | 3.290 | 0.1004 |
Pure Error | 5 | 9.350 | 1.870 | ||
Cor Total | 29 | 3136 |
3.4. Validation and Optimization of Fe-Zn-PVA NCs
3.5. Effect of Parameters on MG Dye Removal
3.6. Adsorption Kinetics
Models | Equations | Parameters | Values |
---|---|---|---|
Pseudo-first-order | Qe (mg·g−1) | 6.7842 | |
K1 (min−1) | −0.3802 | ||
R2 | 0.983 | ||
Pseudo-second-order | Qe (mg·g−1) | 18.9393 | |
K2 (g·mg−1·min−1) | 0.1858 | ||
R2 | 0.9971 | ||
Intra-particle diffusion | C (mg·g−1) | 13.185 | |
Kid (mg·g−1) | 2.2472 | ||
R2 | 0.9883 | ||
Elovich Model | α (mg·g−1·min−1) | 3989 | |
β (g·mg−1) | 0.5026 | ||
R2 | 0.9707 |
3.7. Adsorption Isotherms
3.7.1. Langmuir Isotherm Model
3.7.2. Freundlich Isotherm Model
3.7.3. Temkin and Dubinin–Radushkevich Isotherm Models
Isotherm Models | Models’ Equations | Parameters | 30 °C | 35 °C | 40 °C | 45 °C |
---|---|---|---|---|---|---|
Langmuir | Qm (mg·g−1) | 92.59 | 84.03 | 79.36 | 44.84 | |
KL (L·mg−1) | 0.3375 | 0.3028 | 0.2844 | 0.5198 | ||
RL | 0.2000 | 0.2170 | 0.7720 | 0.1240 | ||
R2 | 0.8098 | 0.8408 | 0.8911 | 0.9920 | ||
Freundlich | n | 2.721 | 1.545 | 1.611 | 2.285 | |
KF (mg·g−1) (L·mg−1)1/n | 40.48 | 19.09 | 17.57 | 15.15 | ||
R2 | 0.9428 | 0.9820 | 0.9943 | 0.9521 | ||
Temkin | B (J·mol−1) | 10.52 | 16.57 | 15.57 | 9.630 | |
Kt (L·g−1) | 58.66 | 3.750 | 3.559 | 5.314 | ||
R2 | 0.8951 | 0.8977 | 0.9197 | 0.9863 | ||
D–R | Qs (mg·g−1) | 47.07 | 40.56 | 39.00 | 33.04 | |
β (mol2·kJ−2) (−1 × 10−8) | 2.000 | 10.00 | 10.00 | 20.00 | ||
ε | 1550 | 1350 | 1270 | 1040 | ||
E (kJ·mol−1) | 5.000 | 2.240 | 2.240 | 1.580 | ||
R2 | 0.9264 | 0.8466 | 0.8507 | 0.9328 |
3.8. Adsorption Thermodynamics
3.9. Desorption and Surface Regeneration Studies
3.10. Comparison with Reported Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Lv, L.; Pan, B.; Zhang, W.; Zhang, S.; Zhang, Q. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 2011, 170, 381–394. [Google Scholar] [CrossRef]
- Muzaffar, S.; Tahir, H. Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology. J. Mol. Liq. 2018, 252, 368–382. [Google Scholar] [CrossRef]
- Suvith, V.S.; Philip, D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, T.; Kolya, H.; Jana, S.; Senapati, M. Green synthesis of Ag-Au bimetallic nanocomposites using a biodegradable synthetic graft copolymer; hydroxyethyl starch-g-poly (acrylamide-co-acrylic acid) and evaluation of their catalytic activities. Eur. Polym. J. 2017, 87, 113–123. [Google Scholar] [CrossRef]
- Tahira, R.I.F.F.A.T.; Naeemullah, M.; Akbar, F.; Masood, M.S. Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak. J. Bot. 2011, 43, 151–154. [Google Scholar]
- Neděla, O.; Slepička, P.; Švorčík, V. Surface modification of polymer substrates for biomedical applications. Materials 2017, 10, 1115. [Google Scholar] [CrossRef]
- Chen, Z.X.; Cheng, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. J. Nanoparticle Res. 2012, 14, 899. [Google Scholar] [CrossRef]
- Üzüm, Ç.; Shahwan, T.; Eroğlu, A.E.; Hallam, K.R.; Scott, T.B.; Lieberwirth, I. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 2009, 43, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.X.; Jin, X.Y.; Su, J.; Wang, Q.P.; Chen, Z.L. Study on Removal of Methyl Orange in Aqueous Solution Using Bentonite Supported Nanoscale Zero-valent Iron Particles. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2011, 4, 023. [Google Scholar]
- Honetschlägerová, L.; Janouškovcová, P.; Kubal, M.; Sofer, Z. Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass. Environ. Technol. 2015, 36, 358–365. [Google Scholar] [CrossRef]
- Pal, J.; Deb, M.K.; Deshmukh, D.K.; Verma, D. Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl. Water Sci. 2013, 3, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Mosaferi, M.; Nemati, S.; Khataee, A.; Nasseri, S.; Hashemi, A.A. Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J. Environ. Health Sci. Eng. 2014, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Liao, G.; Li, Q.; Zhao, W.; Pang, Q.; Gao, H.; Xu, Z. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A Gen. 2018, 549, 102–111. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Lee, G.H.; Hwang, J.S.; Jeong, S.W.; Kim, H.C.; Kim, E.; Oh, T.H.; Lee, S.J.; Lee, S.G. Preparation of monodisperse poly (vinyl alcohol) (PVA) nanoparticles by dispersion polymerization and heterogeneous surface saponification. Fibers Polym. 2016, 17, 502–511. [Google Scholar] [CrossRef]
- Mallakpour, S.; Darvishzadeh, M. Ultrasonic treatment as recent and environmentally friendly route for the synthesis and characterization of polymer nanocomposite having PVA and biosafe BSA-modified ZnO nanoparticles. Polym. Adv. Technol. 2018, 29, 2174–2183. [Google Scholar] [CrossRef]
- Noghi, S.A.; Naeimi, A.; Hamidian, H. First electrospun immobilized molybdenum complex on bio iron oxide nanofiber for green oxidation of alcohols. Polymer 2018, 149, 229–237. [Google Scholar] [CrossRef]
- Li, P.; Deng, J.; Li, Y.; Liang, W.; Wang, K.; Kang, L.; Zeng, S.; Yin, S.; Zhao, Z.; Liu, X.; et al. One-step solution combustion synthesis of Fe2O3/C nano-composites as anode materials for lithium ion batteries. J. Alloys Compd. 2014, 590, 318–323. [Google Scholar] [CrossRef]
- Qu, J.C.; Ren, C.L.; Dong, Y.L.; Chang, Y.P.; Zhou, M.; Chen, X.G. Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalyst. Chem. Eng. J. 2012, 211, 412–420. [Google Scholar] [CrossRef]
- Chronakis, I.S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. J. Mater. Process. Technol. 2005, 167, 283–293. [Google Scholar] [CrossRef]
- Kaushal, S.; Singh, J.S. Wastewater Impact on Human Health and Microorganism-Mediated Remediation and Treatment Through Technologies. In Agro-Environmental Sustainability; Springer: Cham, Switzerland, 2017; pp. 235–250. [Google Scholar]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Hammed, U.; Jahanzeb, Q.; Sultan, M. Removal of fast green dye (CI 42053) from an aqueous solution using Azadirachta indica leaf powder as a low cost adsorbent. Afr. J. Biotechnol. 2008, 7, 3906–3911. [Google Scholar]
- Saad, M.; Tahir, H.; Ali, D. Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using Response Surface Methodology. Ultrason. Sonochem. 2017, 38, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Çoruh, S.; Elevli, S. Optimization of malachite green dye removal by sepiolite clay using a central composite design. Glob. NEST J. 2014, 16, 339–347. [Google Scholar]
- Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A.; Dil, E.A. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrason. Sonochem. 2017, 34, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Tahir, H.; Khan, J.; Hameed, U.; Saud, A. Synthesis of polyaniline nanoparticles and their application for the removal of Crystal Violet dye by ultrasonicated adsorption process based on Response Surface Methodology. Ultrason. Sonochem. 2017, 34, 600–608. [Google Scholar] [CrossRef]
- Dil, E.A.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Bazrafshan, A.A.; Ghaedi, A.M. Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface methodology. Ultrason. Sonochem. 2016, 33, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Paul, G. Green synthesis of silver nanoparticles using Mentha asiatica (Mint) extract and evaluation of their antimicrobial potential. Int. J. Curr. Res. Biosci. Plant Biol. 2017, 4, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Ghodake, G.S.; Jiang, Y.Y.; Kim, D.S.; Saratale, G.D. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus× clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ. Sci. Pollut. Res. 2018, 25, 10250–10263. [Google Scholar] [CrossRef]
- Kayal, S.; Ramanujan, R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C 2010, 30, 484–490. [Google Scholar] [CrossRef]
- Hamzah, M.; Ndimba, R.M.; Khenfouch, M.; Srinivasu, V.V. Blue luminescence from hydrothermal ZnO nanorods based PVA nanofibers. J. Mater. Sci. Mater. Electron. 2017, 28, 11915–11920. [Google Scholar] [CrossRef]
- Sharifpour, E.; Khafri, H.Z.; Ghaedi, M.; Asfaram, A.; Jannesar, R. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization. Ultrason. Sonochem. 2018, 40, 373–382. [Google Scholar] [CrossRef]
- Vyavahare, G.D.; Gurav, R.G.; Jadhav, P.P.; Patil, R.R.; Aware, C.B.; Jadhav, J.P. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere 2018, 194, 306–315. [Google Scholar] [CrossRef]
- Sawant, V.J.; Bamane, S.R. PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J. Drug Deliv. Sci. Technol. 2018, 43, 397–408. [Google Scholar] [CrossRef]
- Tahir, H.; Saad, M.; Attala, O.A.; El-Saoud, W.A.; Attia, K.A.; Jabeen, S.; Zeb, J. Sustainable Synthesis of Iron–Zinc Nanocomposites by Azadirachta indica Leaves Extract for RSM-Optimized Sono-Adsorptive Removal of Crystal Violet Dye. Materials 2023, 16, 1023. [Google Scholar] [CrossRef]
- Saad, M.; Tahir, H. Synthesis of carbon loaded γ-Fe2O3 nanocomposite and their applicability for the selective removal of binary mixture of dyes by ultrasonic adsorption based on response surface methodology. Ultrason. Sonochem. 2017, 36, 393–408. [Google Scholar] [CrossRef]
- Abd-Elrahman, M.I. Synthesis of polyvinyl alcohol–zinc oxide composite by mechanical milling: Thermal and infrared studies. Nanoscale Microscale Thermophys. Eng. 2013, 17, 194–203. [Google Scholar] [CrossRef]
- Tahir, H.; Saad, M. Next-Generation Nanoadsorbents: Opportunities and Challenges. In Composite Nanoadsorbents; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 245–264. [Google Scholar]
- Tahir, H.; Saad, M. Using dyes to evaluate the photocatalytic activity. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 32, pp. 125–224. [Google Scholar]
- Wu, Y.; Li, Y.; Zhao, T.; Wang, X.; Isaeva, V.I.; Kustov, L.M.; Yao, J.; Gao, J. Bimetal-organic framework-derived nanotube@ cellulose aerogels for peroxymonosulfate (PMS) activation. Carbohydr. Polym. 2022, 296, 119969. [Google Scholar] [CrossRef]
- Lei, C.; Gao, J.; Ren, W.; Xie, Y.; Abdalkarim, S.Y.H.; Wang, S.; Ni, Q.; Yao, J. Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr. Polym. 2019, 205, 35–41. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, S.G.; Lu, L.; Gong, W.X.; Liu, X.W.; Gao, B.Y.; Zhang, H.Y. Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge. Biochem. Eng. J. 2008, 39, 538–546. [Google Scholar] [CrossRef]
- Bazrafshan, A.A.; Hajati, S.; Ghaedi, M. Synthesis of regenerable Zn (OH)2 nanoparticle-loaded activated carbon for the ultrasound-assisted removal of malachite green: Optimization, isotherm and kinetics. RSC Adv. 2015, 5, 79119–79128. [Google Scholar] [CrossRef]
- Solaymani, E.; Ghaedi, M.; Karimi, H.; Ahmadi Azqhandi, M.H.; Asfaram, A. Intensified removal of Malachite green by AgOH-AC nanoparticles combined with ultrasound: Modeling and optimization. Appl. Organomet. Chem. 2017, 31, e3857. [Google Scholar] [CrossRef]
- Mohammadi, A.; Daemi, H.; Barikani, M. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int. J. Biol. Macromol. 2014, 69, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Rawat, V.; Banerjee, S.; Sanroman, M.A.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C. Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J. Mol. Liq. 2015, 212, 227–236. [Google Scholar] [CrossRef]
- Sabo, I.A.; Yahuza, S.; Dan-Iya, B.I.; Abubakar, A. Kinetic Analysis of the Adsorption of Malachite Green onto Graphene Oxide Sheets Integrated with Gold Nanoparticles. J. Biochem. Microbiol. Biotechnol. 2021, 9, 48–52. [Google Scholar] [CrossRef]
S. No. | Variables | %Removal of MG | ||||
---|---|---|---|---|---|---|
Time (min) | pH | Amount of NP (g) | Pollutant Concentration (mg L−1) | Experimental | Predicted | |
1 | 8 | 6 | 0.020 | 10 | 62.01 | 62.30 |
2 | 6 | 4.5 | 0.015 | 15 | 53.23 | 51.39 |
3 | 8 | 6 | 0.020 | 20 | 61.02 | 62.57 |
4 | 6 | 7.5 | 0.015 | 15 | 67.34 | 65.86 |
5 | 6 | 7.5 | 0.015 | 5 | 79.04 | 77.10 |
6 | 6 | 7.5 | 0.005 | 15 | 64.34 | 66.10 |
7 | 10 | 7.5 | 0.015 | 15 | 63.82 | 62.25 |
8 | 6 | 7.5 | 0.015 | 15 | 63.27 | 65.86 |
9 | 4 | 9 | 0.010 | 10 | 78.75 | 76.77 |
10 | 8 | 9 | 0.010 | 10 | 84.94 | 84.00 |
11 | 6 | 10.5 | 0.015 | 15 | 88.93 | 91.13 |
12 | 4 | 9 | 0.020 | 20 | 76.95 | 74.23 |
13 | 8 | 9 | 0.020 | 10 | 83.29 | 85.17 |
14 | 6 | 7.5 | 0.015 | 15 | 65.99 | 65.86 |
15 | 6 | 7.5 | 0.015 | 15 | 66.00 | 65.86 |
16 | 6 | 7.5 | 0.025 | 15 | 74.34 | 72.94 |
17 | 6 | 7.5 | 0.015 | 25 | 69.10 | 71.41 |
18 | 4 | 6 | 0.020 | 20 | 58.62 | 59.63 |
19 | 4 | 9 | 0.020 | 10 | 77.58 | 78.37 |
20 | 4 | 9 | 0.010 | 20 | 71.04 | 70.81 |
21 | 4 | 6 | 0.010 | 20 | 56.25 | 53.95 |
22 | 8 | 6 | 0.010 | 20 | 58.04 | 57.32 |
23 | 6 | 7.5 | 0.015 | 15 | 66.14 | 65.86 |
24 | 2 | 7.5 | 0.015 | 15 | 50.14 | 52.08 |
25 | 8 | 9 | 0.020 | 20 | 79.49 | 78.74 |
26 | 6 | 7.5 | 0.015 | 15 | 66.44 | 65.86 |
27 | 8 | 9 | 0.010 | 20 | 76.56 | 75.75 |
28 | 8 | 6 | 0.010 | 10 | 56.58 | 58.87 |
29 | 4 | 6 | 0.010 | 10 | 52.40 | 53.21 |
30 | 4 | 6 | 0.020 | 10 | 56.68 | 57.07 |
Concentration | ∆H | ∆S | ∆G | |||
---|---|---|---|---|---|---|
(mg L−1) | (kJ mol−1K−1) | (J mol−1) | (KJ mol−1) | |||
308 K | 313 K | 318 K | 323 K | |||
5 | −35.029 | −84.271 | −9.123 | −8.503 | −8.382 | −7.759 |
10 | −23.194 | −50.631 | −7.618 | −7.258 | −7.211 | −6.788 |
15 | −40.419 | −106.876 | −7.443 | −7.055 | −6.427 | −5.867 |
20 | −57.116 | −162.389 | −6.935 | −6.205 | −6.175 | −4.212 |
25 | −73.275 | −213.504 | −7.143 | −6.660 | −6.139 | −3.717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, M.; Tahir, H.; Mustafa, S.; Attala, O.A.; El-Saoud, W.A.; Attia, K.A.; Filfilan, W.M.; Zeb, J. Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye. Nanomaterials 2023, 13, 1747. https://doi.org/10.3390/nano13111747
Saad M, Tahir H, Mustafa S, Attala OA, El-Saoud WA, Attia KA, Filfilan WM, Zeb J. Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye. Nanomaterials. 2023; 13(11):1747. https://doi.org/10.3390/nano13111747
Chicago/Turabian StyleSaad, Muhammad, Hajira Tahir, Seher Mustafa, Osama A. Attala, Waleed A. El-Saoud, Kamal A. Attia, Wessam M. Filfilan, and Jahan Zeb. 2023. "Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye" Nanomaterials 13, no. 11: 1747. https://doi.org/10.3390/nano13111747
APA StyleSaad, M., Tahir, H., Mustafa, S., Attala, O. A., El-Saoud, W. A., Attia, K. A., Filfilan, W. M., & Zeb, J. (2023). Polyvinyl Alcohol Assisted Iron–Zinc Nanocomposite for Enhanced Optimized Rapid Removal of Malachite Green Dye. Nanomaterials, 13(11), 1747. https://doi.org/10.3390/nano13111747