Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites
Abstract
:1. Introduction
- ✓
- Thus, three factors affect the satellite-atmosphere interaction: orbit inclination, solar activity, and flight altitude. This interaction evokes two problems: velocity loss and material erosion. Under certain circumstances, these two problems become tightly interrelated, as in the case of VLEO satellites that use residual atmosphere as propellant for orbit-rising thrusters.
- ✓
- The effect of atomic oxygen (AO) on the material in the intake devices and thruster could be a detrimental and life-limiting factor.
- ✓
- VLEO and LEO satellites offer many significant advantages yet at the same time face several significant challenges; with the present-day tendency to refocus many of the key missions to low orbits, among other problems of operating at these orbits, issues pertaining to material degradation and stability under these conditions must be properly addressed so as not to hinder future development of low orbit satellite technology.
2. Corrosion Factors and Mechanisms in Low Orbit Environment
2.1. LEO Environmental Challenges and Material Requirements
2.2. Simulated Corrosion Experiments
- ✓
- Simulation and theoretical studies are very important in the design of space materials, and novel approaches including those based on artificial intelligence (AI) and machine learning (ML) need to be implemented to support fast progress in this field.
2.3. In-Flight Corrosion Experiments
2.4. Lab-Based AO Corrosion Experiments and Facilities
2.5. Corrosion Mechanisms
3. Importance of Carbon Nanomaterials for the Corrosion Mitigation
3.1. Use of Nanomaterials for Corrosion Mitigation in Space
3.2. Carbon Nanotubes
3.3. Graphene
3.4. Carbon Quantum Dots (CQDs)
3.5. Graphene Oxide and Reduced Graphene Oxide
3.6. Carbon Fibres for Space Applications
4. Outlook
- -
- Admixtures could be added to the air directly in the intake devices and internal parts of the thruster to make AO less chemically active and, thus, to reduce the erosion without the use of an additional protective material. However, it is worth noting that such additives could potentially lower the efficiency of these thrusters;
- -
- Physical mechanisms and sub-systems could be used to neutralize oxygen by, e.g., chemical reaction with other substances producing oxides still suitable for the use as propellant, but less chemically aggressive;
- -
- Special configurations of thrusters, such as electrodeless rotational systems [99] that prevent direct contact between electrodes and discharge chamber walls and oxygen plasma, could be very promising for VLEO applications;
- -
- Self-healing materials could be promising, e.g., for super low perigee orbit satellites, where the material could self-heal during the high-altitude phase of orbit when the satellites are less affected by the exposure to atomic oxygen;
- -
- Next, the most novel materials and nanocomposites, including advanced metallic propellants which potentially could be influenced by atomic oxygen [100], should be tested in typical VLEO environments to understand the impact of the latter;
- -
- Finally, the ground-based facilities for the comprehensive testing of novel materials under the specific LEO and VLEO conditions need to be further designed to be more sophisticated and to accurately reflect the real conditions across their entire range. The toolkit of these technologies would significantly speed up innovation and promote the development of more diverse novel nanomaterials for space, enabled by affordable, rapid and readily available to many testing and optimisation facilities, alleviating the need for expensive in-space tests.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, C.S.; Giraudo, M.; Moratto, C.; Yamaguchi, N. Chapter 4—Spaceflight environment. In Space Safety and Human Per-formance; Sgobba, T., Kanki, B., Clervoy, J.-F., Sandal, G.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 87–138. [Google Scholar]
- Crisp, N.H.; Rojas, A.M.; Roberts, P.C.E.; Edmondson, S.; Haigh, S.J.; Holmes, B.E.A.; Oiko, V.T.A.; Sinpetru, L.A.; Smith, K.L.; Arcos, A.; et al. Experimental Results from the Satellite for Orbital Aerodynamics Research (SOAR) Mission. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022; pp. 1–9. [Google Scholar]
- Meseguer, J.; Pérez-Grande, I.; Sanz-Andrés, A. 3—Keplerian orbits. In Spacecraft Thermal Control; Meseguer, J., Pérez-Grande, I., Sanz-Andrés, A., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 39–57. [Google Scholar]
- Levchenko, I.; Keidar, M.; Cantrell, J.; Wu, Y.-L.; Kuninaka, H.; Bazaka, K.; Xu, S. Explore space using swarms of tiny satellites. Nature 2018, 562, 185–187. [Google Scholar] [CrossRef]
- Levchenko, I.; Goebel, D.M.; Bazaka, K. Electric propulsion of spacecraft. Phys. Today 2022, 75, 38–44. [Google Scholar] [CrossRef]
- Perez, R. Chapter 1—Introduction to Satellite Systems and Personal Wireless Communications. In Wireless Communications Design Handbook; Perez, R., Ed.; Academic Press: Cambridge, MA, USA, 1998; Volume 1, pp. 1–30. [Google Scholar]
- Peterson, K.M. Satellite Communications. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 413–438. [Google Scholar]
- High-Speed, Low-Latency Broadband Internet. Available online: https://www.starlink.com (accessed on 7 February 2023).
- EOI Space. Available online: https://eoi.space (accessed on 7 February 2023).
- DISCOVERER—Disruptive Technologies for Very Low Earth Orbit Platforms. Available online: https://cordis.europa.eu/project/id/737183 (accessed on 7 February 2023).
- Wu, J.; Zheng, P.; Zhang, Y.; Tang, H. Recent development of intake devices for atmosphere-breathing electric propulsion system. Prog. Aerosp. Sci. 2022, 133, 100848. [Google Scholar] [CrossRef]
- Munoz, V.C.; Gonzalez, D.; Becedas, J.; Dominguez, R.M.; Roberts, P.C.E.; Crisp, N.H.; Oiko, V.T.A.; Edmondson, S.; Worrall, S.D.; Haigh, S.; et al. Attitude control for satellites flying in VLEO using aerodynamic surfaces. JBIS J. Br. Interplanet. Soc. 2020, 73, 103–112. [Google Scholar]
- Chen, G.; Li, X.; He, M.; Liu, S.; Man, H.; Gao, H.; Li, Y. Longitudinal variation of thermospheric density during low solar activity from APOD observations. Atmosphere 2023, 14, 155. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Meng, X.; Tang, X.; Yan, F.; Zhang, X.; Bai, W.; Du, Q.; Wang, X.; Cai, Y.; et al. Analysis of orbital atmospheric density from QQ-Satellite precision orbits based on GNSS observations. Remote Sens. 2022, 14, 3873. [Google Scholar] [CrossRef]
- Goto, A.; Umeda, K.; Yukumatsu, K.; Kimoto, Y. Property changes in materials due to atomic oxygen in the low Earth orbit. CEAS Space J. 2021, 13, 415–432. [Google Scholar] [CrossRef]
- Ashby, J.; Trifoni, E.; Mathew, J.; Anderson, I.A.; Loho, T.; Rosset, S.; Henke, E.-F.M. Protecting dielectric elastomers from the space environment with ultra high SPF sunscreen. In Proceedings of the SPIE 11587, Electroactive Polymer Actuators and Devices (EAPAD) XXIII, 115871A, Online, 25 March 2021. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K.; Ding, Y.; Raitses, Y.; Mazouffre, S.; Henning, T.; Klar, P.J.; Shinohara, S.; Schein, J.; Garrigues, L.; et al. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Appl. Phys. Rev. 2018, 5, 011104. [Google Scholar] [CrossRef]
- Levchenko, I.; Xu, S.; Teel, G.; Mariotti, D.; Walker, M.L.R.; Keidar, M. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 2018, 9, 879. [Google Scholar] [CrossRef]
- Yusaf, T.; Mahamude, A.S.F.; Farhana, K.; Harun, W.S.W.; Kadirgama, K.; Ramasamy, D.; Kamarulzaman, M.K.; Subramonian, S.; Hall, S.; Dhahad, H.A. A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability 2022, 14, 12336. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, H.; Zhang, H.; Maruyama, S.; Lin, L. The Roadmap of Graphene: From Fundamental Research to Broad Applications. Adv. Mater. 2022, 32, 2208378. [Google Scholar] [CrossRef]
- Kumar, A.; Al-Jumaili, A.; Bazaka, O.; Ivanova, E.P.; Levchenko, I.; Bazaka, K.; Jacob, M.V. Functional nanomaterials, synergisms and biomimicry for environmentally benign marine antifouling technology. Mater. Horiz. 2021, 8, 3201–3238. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced Materials for Next-Generation Spacecraft. Adv. Mater. 2018, 30, e1802201. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, J.; Zhang, Y.; Zhao, Y. Design and Optimization of vacuum Intake for Atmosphere-Breathing electric propulsion (ABEP) system. Vacuum 2022, 195, 110652. [Google Scholar] [CrossRef]
- Romano, F.; Espinosa-Orozco, J.; Pfeiffer, M.; Herdrich, G.; Crisp, N.; Roberts, P.; Holmes, B.; Edmondson, S.; Haigh, S.; Livadiotti, S.; et al. Intake design for an Atmosphere-Breathing Electric Propulsion System. Acta Astronaut. 2021, 187, 225–235. [Google Scholar] [CrossRef]
- Hild, F.; Traub, C.; Pfeiffer, M.; Beyer, J.; Fasoulas, S. Optimisation of satellite geometries in Very Low Earth Orbits for drag minimisation and lifetime extension. Astronautica 2022, 201, 340–352. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, H.; Yan, W.; Chen, S.; Qiu, M.; Liao, B. Atomic-Oxygen-Durable and Antistatic α-AlxTiyO/γ-NiCr Coating on Kapton for Aerospace Applications. ACS Appl. Mater. Interfaces 2021, 13, 58179–58192. [Google Scholar] [CrossRef] [PubMed]
- Andropova, U.; Serenko, O.; Tebeneva, N.; Tarasenkov, A.; Buzin, M.; Afanasyev, E.; Sapozhnikov, D.; Bukalov, S.; Leites, L.; Aysin, R.; et al. Atomic oxygen erosion resistance of polyimides filled hybrid nanoparticles. Polym. Test. 2020, 84, 106404. [Google Scholar] [CrossRef]
- Levchenko, I.; Baranov, O.; Fang, J.; Cherkun, O.; Xu, S.; Bazaka, K. Focusing plasma jets to achieve high current density: Feasibility and opportunities for applications in debris removal and space exploration. Aerosp. Sci. Technol. 2021, 108, 106343. [Google Scholar] [CrossRef]
- Yagnamurthy, S.; Chen, Q.; Chen, C.; Chasiotis, I. Erosion yield of epoxy–silica nanocomposites at the lower earth orbit environment of the International Space Station. J. Compos. Mater. 2013, 47, 107–117. [Google Scholar] [CrossRef]
- Evetts, S.N. Chapter 3—Overview of Bioastronautics. In Safety Design for Space Systems; Musgrave, G.E., Larsen, A.M., Sgobba, T., Eds.; Butterworth-Heinemann: Burlington, MA, USA, 2009; pp. 105–161. [Google Scholar] [CrossRef]
- Grossman, E.; Gouzman, I. Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 48–57. [Google Scholar] [CrossRef]
- Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; et al. A 1 cm space debris impact onto the Sentinel-1A solar array. Acta Astronaut. 2017, 137, 434–443. [Google Scholar] [CrossRef]
- Mundari, N.D.A.; Srivastava, A.; Toyoda, K.; Cho, M. Influence of atomic oxygen exposure on surface resistivity of silicon doped polyimide affecting spacecraft charging. Vacuum 2014, 105, 11–16. [Google Scholar] [CrossRef]
- Banks, B.A.; Miller, S.K.; de Groh, K.K. Low earth orbital atomic oxygen interactions with materials. In Proceedings of the Second International Energy Conversion Engineering Conference (Sponsored by AIAA), Providence, RI, USA, 16–19 August 2004; Available online: https://ntrs.nasa.gov/api/citations/20040191331/downloads/20040191331.pdf (accessed on 7 February 2023).
- Liu, G.; Cheng, L.; Li, K.; Chen, Z.; Xiong, X.; Luan, X. Damage behavior of atomic oxygen on zirconium carbide coating modified carbon/carbon composite. Ceram. Int. 2020, 46, 3324–3331. [Google Scholar] [CrossRef]
- Xie, F.; Gong, X.; Huang, L.; Liu, L.; Leng, J.; Liu, Y. Effects of accelerated aging on thermal, mechanical, and shape memory properties of a cyanate-based shape memory polymer: II atomic oxygen. Polym. Degrad. Stab. 2021, 186, 109515. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Wu, Z.; Wu, G.; Huang, Y. Atomic oxygen erosion behaviors of PBO fibers and their composite: Microstructure, surface chemistry and physical properties. Polym. Degrad. Stab. 2016, 133, 275–282. [Google Scholar] [CrossRef]
- Wang, H.; Qian, M.; Murray, V.J.; Wu, B.; Yang, Y.; Dong, A.; Che, L.; Minton, T.K. Effects of hyperthermal atomic oxygen on a cyanate ester and its carbon fiber-reinforced composite. High Perform. Polym. 2019, 31, 472–482. [Google Scholar] [CrossRef]
- Gotlib-Vainstein, K.; Gouzman, I.; Girshevitz, O.; Bolker, A.; Atar, N.; Grossman, E.; Sukenik, C.N. Liquid phase deposition of a space-durable, antistatic SnO2 coating on Kapton. ACS Appl. Mater. Interfaces 2015, 7, 3539–3546. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Wang, W.; Li, Y.; Xu, M.; Han, Z.; Zhang, Y.; Gao, W. Study on structure-performance relationship of RGO enhanced polypropylene composites with improved atomic oxygen resistance. Compos. Part B Eng. 2022, 239, 109970. [Google Scholar] [CrossRef]
- Hopkins, A.; Labatete-Goeppinger, A.; Kim, H.; Katzman, H. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon 2016, 107, 77–86. [Google Scholar] [CrossRef]
- deGroh, K.K.; Dever, J.A.; Jaworske, D.A.; Miller, S.K.; Sechkar, E.A.; Panko, S.R. NASA Glenn research center’s materials international space station experiments (MISSE 1-7). In Proceedings of the International Symposium on SM/MPAC and SEED Experiments, Tsukaba, Japan, 10–11 March 2008. [Google Scholar]
- Abbe, E.; Renger, T.; Sznajder, M.; Klemmed, B.; Sachse, E.; Hübner, R.; Schüler, T.; Bärtling, Y.; Muchow, B.; Tajmar, M.; et al. A material experiment for small satellites to characterise the behaviour of carbon nanotubes in space–development and ground validation. Adv. Space Res. 2019, 63, 2312–2321. [Google Scholar] [CrossRef]
- Reddy, M.R. Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 1995, 30, 281–307. [Google Scholar] [CrossRef]
- Mathew, J.; Trifoni, E.; Ashby, J.; Rosset, S.; Anderson, I.A. LEO atomic oxygen interaction experiments at the ANU National Space Test Facility. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- Jayalath, S.; Herath, M.; Epaarachchi, J.; Trifoni, E.; Gdoutos, E.E.; Fang, L. Durability and long-term behaviour of shape memory polymers and composites for the space industry—A review of current status and future perspectives. Polym. Degrad. Stab. 2023, 211, 110297. [Google Scholar] [CrossRef]
- Maldonado, C.; McHarg, G.; Asmolova, O.; Andersen, G.; Rodrigues, S.; Ketsdever, A. Material Exposure Effects in a Simulated Low-Earth Orbit Environment. AIP Conf. Proc. 2016, 1786, 100008. [Google Scholar] [CrossRef]
- He, Y.; Suliga, A.; Brinkmeyer, A.; Schenk, M.; Hamerton, I. Atomic oxygen degradation mechanism s of epoxy composites for space applications. Polym. Degrad. Stab. 2019, 166, 108–120. [Google Scholar] [CrossRef]
- Shpilman, Z.; Gouzman, I.; Lempert, G.; Grossman, E.; Hoffman, A. FR plasma system as an atomic oxygen exposure facility. Rev. Sci. Instrum. 2008, 79, 025106. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tian, X.; Yang, S.; Chu, P.K. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit. Rev. Sci. Instrum. 2007, 78, 103301. [Google Scholar] [CrossRef]
- Verker, R.; Bolker, A.; Carmiel, Y.; Gouzman, I.; Grossman, E.; Minton, T.K.; Remaury, S. Ground testing of an on-orbit atomic oxygen flux and ionizing radiation dose sensor based on material degradation by the space environment. Acta Astronaut. 2020, 173, 333–343. [Google Scholar] [CrossRef]
- Yu, C.; Ju, P.; Wan, H.; Chen, L.; Li, H.; Zhou, H.; Chen, J. Enhanced atomic oxygen resistance and tribological properties of PAI/PTFE composites reinforced by POSS. Prog. Mater. Sci. 2020, 139, 105427. [Google Scholar] [CrossRef]
- Goto, A.; Yamashita, S.; Tagawa, M. Formation of Nanoscale Protrusions on Polymer Films after Atomic Oxygen Irradiation: Changes in Morphologies, Masses, and FT-IR Spectra. Langmuir 2022, 38, 3339–3349. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.; Li, W.; Li, H.; Zhu, M.; Pu, J.; Xue, Q. Space irradiation-induced damage to graphene films. Nanoscale 2017, 9, 13079–13088. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Cui, M.; Li, Q.; Li, W.; Pu, J.; Xue, Q.; Wang, L. Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation. Appl. Surf. Sci. 2019, 479, 669–678. [Google Scholar] [CrossRef]
- Li, H.; Gu, H.; Ming, C.; Sun, Y.-Y.; Zhang, Y.; Song, L. Insights into Impact Interaction between Graphene and High-speed Atomic Oxygen for Aerospace Protection Application. Appl. Surf. Sci. 2023, 609, 155274. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Lee, C.-H.; Jiahong, W. Unified model for low-Earth-orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials. Aerosp. Sci. Technol. 2016, 53, 194–206. [Google Scholar] [CrossRef]
- Levchenko, I.; Cvelbar, U.; Keidar, M. Graphene flakes in arc plasma: Conditions for the fast single-layer growth. Graphene 2016, 5, 81–89. [Google Scholar] [CrossRef]
- Vricella, A.; Delfini, A.; Albano, M.; Santoni, F.; Pastore, R.; Rubini, G.; Marchetti, M. Study and ground simulations of outgassing and hypervelocity impacts on carbon-based materials for space applications. In Proceedings of the 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 652–657. [Google Scholar] [CrossRef]
- Jiao, L.; Gu, Y.; Wang, S.; Yang, Z.; Wang, H.; Li, Q.; Li, M.; Zhang, Z. Atomic oxygen exposure behaviors of CVD-grown carbon nanotube film and its polymer composite film. Compos. Part A Appl. Sci. Manuf. 2015, 71, 116–125. [Google Scholar] [CrossRef]
- Xoan Xosé Fernández, S.-R.; Alberto Jiménez, S.; Silvia González, P. Smart Coatings with Carbon Nanoparticles. In 21st Century Surface Science; Phuong, P., Pratibha, G., Samir, K., Kavita, Y., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 12. [Google Scholar]
- Thakur, A.; Ganjoo, R.; Kumar, A. Surface Modified Carbon Nanotubes in Corrosion Protection. In Surface Modified Carbon Nanotubes Volume 1: Fundamentals, Synthesis and Recent Trends; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2022; Volume 1424, pp. 235–255. [Google Scholar]
- Gascon, N.; Crawford, W.S.; Corey, R.L.; Cappelli, M.A. Coaxial Hall thruster with diamon dinner channel wall. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, CA, USA, 9–12 July 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006; p. 4995. [Google Scholar]
- Krauss, A.R.; Auciello, O.; Ding, M.Q.; Gruen, D.M.; Huang, Y.; Zhirnov, V.V.; Givargizov, E.I.; Breskin, A.; Chechen, R.; Shefer, E.; et al. Electron field emission for ultrananocrystalline diamond films. J. Appl. Phys. 2001, 89, 2958–2967. [Google Scholar] [CrossRef]
- Bhat, A.; Budholiya, S.; Raj, S.A.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M.; Safri, S.N.A. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev. 2021, 10, 237–253. [Google Scholar] [CrossRef]
- Weerasinghe, J.; Scott, J.; Deshan, A.D.K.; Chen, D.; Singh, A.; Sen, S.; Sonar, P.; Vasilev, K.; Li, Q.; Ostrikov, K. Monochromatic Blue and Switchable Blue-Green Carbon Quantum Dots by Room-Temperature Air Plasma Processing. Adv. Mater. Technol. 2022, 7, 2100586. [Google Scholar] [CrossRef]
- Bazaka, O.; Bazaka, K.; Truong, V.K.; Levchenko, I.; Jacob, M.V.; Estrin, Y.; Lapovok, R.; Chichkov, B.; Fadeeva, E.; Kingshott, P.; et al. Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings. Appl. Surf. Sci. 2020, 521, 146375. [Google Scholar] [CrossRef]
- Baranov, O.; Bazaka, K.; Belmonte, T.; Riccardi, C.; Roman, H.E.; Mohandas, M.; Xu, S.; Cvelbar, U.; Levchenko, I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. Nanoscale Horiz. 2023, 8, 568–602. [Google Scholar] [CrossRef] [PubMed]
- Piferi, C.; Carra, C.; Bazaka, K.; Roman, H.E.; Dell’Orto, E.C.; Morandi, V.; Levchenko, I.; Riccardi, C. Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials 2022, 12, 533. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Bazaka, K.; Keidar, M.; Xu, S.; Fang, J. Hierarchical multicomponent inorganic metamaterials: Intrinsically driven self-assembly at the nanoscale. Adv. Mater. 2018, 30, 1702226. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Baranov, O.; Riccardi, C.; Roman, H.E.; Cvelbar, U.; Ivanova, E.P.; Mohandas, M.; Ščajev, P.; Malinauskas, T.; Xu, S.; et al. Nanoengineered carbon-based interfaces for advanced energy and photonics applications: A recent progress and innovations. Adv. Mater. Interfaces 2023, 10, 2201739. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, H.; Levchenko, I.; Bazaka, K.; Xu, S.; Xiao, S. Low-temperature synthesis of graphene by ICP-assisted amorphous carbon sputtering. ChemistrySelect 2018, 3, 8779–8785. [Google Scholar] [CrossRef]
- Sui, X.; Gao, L.; Yin, P. Shielding Kevlar fibers from atomic oxygen erosion via layer-by-layer assembly of nanocomposites. Polym. Degrad. Stab. 2014, 110, 23–26. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, Y.; Hao, Y.; Li, W.; Ren, S.; Wang, L. Multilayer boron nitride nanofilm as an effective barrier for atomic oxygen irradiation. Appl. Surf. Sci. 2020, 504, 144394. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Gu, Y.; Wang, S.; Zhang, Z. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance. Appl. Surf. Sci. 2017, 402, 182–191. [Google Scholar] [CrossRef]
- Vellore, A.; Romero Garcia, S.; Johnson, D.A.; Martini, A. Ambient and nitrogen environment friction data for various materials & surface treatments for space applications. Tribol. Lett. 2021, 69, 10. [Google Scholar] [CrossRef]
- Fan, X.; Shi, Y.; Cui, M.; Ren, S.; Wang, H.; Pu, J. MoS2/WS2 Nanosheet-Based Composite Films Irradiated by Atomic Oxygen: Implications for Lubrication in Space. ACS Appl. Nano Mater. 2021, 4, 10307–10320. [Google Scholar] [CrossRef]
- Jin, S.; Son, G.; Kim, Y.; Kim, C.-G. Enhanced durability of silanized multi-walled carbon nanotube/epoxy nanocomposites under simulated low earth orbit space environment. Compos. Sci. Technol. 2013, 87, 224–231. [Google Scholar] [CrossRef]
- Mykhailova, H.Y.; Sydorchenko, I.; Koda, V.; Kovalchuk, B.V. Influence of Different Type of Irradiation to Carbon Nanotubes. In Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Springer Proceedings in Physics; Fesenko, O., Yatsenko, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 246, pp. 579–586. [Google Scholar] [CrossRef]
- Misak, H.; Sabelkin, V.; Mall, S.; Kladitis, P. Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire. Carbon 2013, 57, 42–49. [Google Scholar] [CrossRef]
- Rahmani, F.; Nouranian, S.; Li, X.; Al-Ostaz, A. Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Appl. Mater. Interfaces 2017, 9, 12802–12811. [Google Scholar] [CrossRef]
- Kumar, S.K.S.; Kim, Y.; Choi, C.; Kim, C.-G. Nano Filled Polybenzimidazole (PBI) Film Coating for Improved Environmental Performance in Space. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Jin, S.-B.; Kim, C.-G. Functionalized nanocarbon based nanocomposites and its feasible application at leo space environment. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Atar, N.; Grossman, E.; Gouzman, I.; Bolker, A.; Murray, V.J.; Marshall, B.C.; Qian, M.; Minton, T.K.; Hanein, Y. Atomic-oxygen-durable and electrically-conductive CNT-POSS-polyimide flexible films for space applications. ACS Appl. Mater. Interfaces 2015, 7, 12047–12056. [Google Scholar] [CrossRef]
- Cha, J.-H.; Jang, W.-H.; Kumar, S.K.S.; Noh, J.-E.; Choi, J.-S.; Kim, C.-G. Functionalized multi-walled carbon nano-tubes/hydrogen-rich benzoxazine nanocomposites for cosmic radiation shielding with enhanced mechanical properties and space environment resistance. Compos. Sci. Technol. 2022, 228, 109634. [Google Scholar] [CrossRef]
- Graphene Infused Space Industry a Discussion about Graphene. NASA Commercial Space Lecture Series. Available online: https://www.nasa.gov/sites/default/files/atoms/files/space_portal_nixene_publishing.pdf (accessed on 20 May 2023).
- Zhang, H.; Ren, S.; Pu, J.; Xue, Q. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation. Appl. Surf. Sci. 2018, 444, 28–35. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, Z.; Zhang, X. Exploring graphene and graphene/nanoparticles as fillers to enhance atomic oxygen corrosion resistance of polyimide films. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127398. [Google Scholar] [CrossRef]
- Xu, X.; Wei, H.; Liu, M.; Zhou, L.; Shen, G.; Li, Q.; Hussain, G.; Yang, F.; Fathi, R.; Chen, H.; et al. Nitrogen-doped carbon quantum dots for effective corrosion inhibition of Q235 steel in concentrated sulphuric acid solution. Mater. Today Commun. 2021, 29, 102872. [Google Scholar] [CrossRef]
- Gao, R.; Wu, Z.; Wang, L.; Liu, J.; Deng, Y.; Xiao, Z.; Fang, J.; Liang, Y. Green preparation of fluorescent nitrogen-doped carbon quantum dots for sensitive detection of oxytetracycline in environmental samples. Nanomaterials 2020, 10, 1561. [Google Scholar] [CrossRef]
- Levchenko, I.; Xu, S.; Mazouffre, S.; Lev, D.; Pedrini, D.; Goebel, D.; Garrigues, L.; Taccogna, F.; Bazaka, K. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Phys. Plasmas 2020, 27, 020601. [Google Scholar] [CrossRef]
- Graphene Used Successfully in Space. Available online: https://www.nro.gov/Portals/65/documents/news/articles/2018/2018-03.pdf (accessed on 20 May 2023).
- Seibers, Z.; Orr, M.; Collier, G.S.; Henriquez, A.; Gabel, M.; Shofner, M.L.; La Saponara, V.; Reynolds, J. Chemically functionalized reduced graphene oxide as additives in polyethylene composites for space applications. Polym. Eng. Sci. 2020, 60, 86–94. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Eisa, M.H.; Maaza, M. Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. C 2023, 9, 29. [Google Scholar] [CrossRef]
- Chen, L.; Wei, F.; Liu, L.; Cheng, W.; Hu, Z.; Wu, G.; Du, Y.; Zhang, C.; Huang, Y. Grafting of silane and graphene oxide onto PBO fibers: Multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties. Compos. Sci. Technol. 2015, 106, 32–38. [Google Scholar] [CrossRef]
- Barcena, J.; Coleto, J.; Zhang, S.C.; Hilmas, G.E.; Fahrenholtz, W.G. Processing of Carbon Nanofiber Reinforced ZrB2 Matrix Composites for Aerospace Applications. Adv. Eng. Mater. 2010, 12, 623–626. [Google Scholar] [CrossRef]
- Smith, C.T.G.; Delkowki, M.; Anguita, J.V.; Cox, D.C.; Haas, C.; Silva, S.R.P. Complete atomic oxygen and UV protection for polymer and composite materials in a low Earth orbit. ACS Appl. Mater. Interfaces 2021, 13, 6670–6677. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Baranov, O.; Pedrini, D.; Riccardi, C.; Roman, H.E.; Xu, S.; Lev, D.; Bazaka, K. Diversity of physical processes: Challenges and opportunities for space electric propulsion. Appl. Sci. 2022, 12, 11143. [Google Scholar] [CrossRef]
- Sun, Y.; Levchenko, I.; Lim, J.W.M.; Xu, L.; Huang, S.; Zhang, Z.; Thio, F.; Potrivitu, G.-C.; Rohaizat, M.W.A.B.; Cherkun, O.; et al. Miniaturized rotating magnetic field driven plasma system: Proof-of-concept experiments. Plasma Sources Sci. Technol. 2021, 30, 065003. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K. Iodine powers low-cost engines for satellites. Nature 2021, 599, 373–374. [Google Scholar] [CrossRef]
Material | Polymer Abbreviation | MISSE 2 Mass Loss, g | Density, g/cm3 | Area, cm2 | MISSE 2 Erosion Yield, cm3/atom |
---|---|---|---|---|---|
Acrylonitrile butadiene styrene | ABS | 0.033861 | 1.05 | 3.4944 | 1.09 × 10−24 |
Cellulose acetate | CA | 0.191482 | 1.2911 | 3.4831 | 5.05 × 10−24 |
Poly-(p-phenylene terephthalamide) | PPD-T (Kevlar) | 0.026790 | 1.4422 | 3.5099 | 6.28 × 10−25 |
Polyethylene | PE | 0.102760 | 0.918 | 3.5489 | >3.74 × 10−24 |
Polyvinyl fluoride | PVF (Tedlar) | 0.132537 | 1.3792 | 3.5737 | 3.19 × 10−24 |
Crystalline polyvinylfluoride w/white pigment | PVF (White Tedlar) | 0.004714 | 1.6241 | 3.4176 | 1.01 × 10−25 |
Polyoxymethylene; acetal; polyformaldehyde | POM (Delrin) | 0.378378 | 1.3984 | 3.5119 | 9.14 × 10−24 |
Polyacrylonitrile | PAN | 0.047281 | 1.1435 | 3.4768 | 1.41 × 10−24 |
Allyl diglycol carbonate | ADC (CR-39) | 0.267295 | 1.3173 | 3.5392 | >6.80 × 10−24 |
Polystyrene | PS | 0.115947 | 1.0503 | 3.5043 | 3.74 × 10−24 |
Polymethyl methacrylate | PMMA | 0.194588 | 1.1628 | 3.5456 | >5.60 × 10−24 |
Polyethylene oxide | PEO | 0.066395 | 1.1470 | 3.5591 | 1.93 × 10−24 |
Poly(p-phenylene-2 6-benzobisoxazole) | PBO (Zylon) | 0.056778 | 1.3976 | 3.5526 | 1.36 × 10−24 |
Epoxide or epoxy | EP | 0.140720 | 1.1150 | 3.5576 | 4.21 × 10−24 |
Polypropylene | PP | 0.072357 | 0.907 | 3.5336 | 2.68 × 10−24 |
Polybutylene terephthalate | PBT | 0.036429 | 1.3318 | 3.5619 | 9.11 × 10−25 |
Polysulphone | PSU | 0.105948 | 1.2199 | 3.5010 | 2.94 × 10−24 |
Polyurethane | PU | 0.057227 | 1.2345 | 3.5182 | 1.56 × 10−24 |
Polyphenylene isophthalate | PPPA (Nomex) | 0.030549 | 0.72 | 3.5626 | 1.41 × 10−24 |
Pyrolytic graphite | PG | 0.02773 | 2.22 | 3.5703 | 4.15 × 10−25 |
Polyetherimide | PEI | 0.126853 | 1.2873 | 3.5352 | >3.31 × 10−24 |
Polyamide 6 or nylon 6 | PA 6 | 0.118376 | 1.1233 | 3.5646 | 3.51 × 10−24 |
Polyamide 66 or nylon 66 | PA 66 | 0.065562 | 1.2252 | 3.5249 | 1.80 × 10−24 |
Polyimide | PI (CP1) | 0.080648 | 1.4193 | 3.5316 | 1.91 × 10−24 |
Polyimide (PMDA) | PI (Kapton H) | 0.124780 | 1.4273 | 3.4590 | 3.00 × 10−24 |
Polyimide (PMDA) | PI (Kapton HN) | 0.121315 | 1.4346 | 3.5676 | 2.81 × 10−24 |
Polyimide (BPDA) | PI (Upilex-S) | 0.038127 | 1.3866 | 3.5382 | 9.22 × 10−25 |
Polyimide (PMDA) | PI (Kapton H) | 0.129250 | 1.4273 | 3.5773 | 3.00 × 10−24 |
High temperature polyimide resin | PI (PMR-15) | 0.118887 | 1.3232 | 3.5256 | >3.02 × 10−24 |
Polybenzimidazole | PBI | 0.082708 | 1.2758 | 3.4762 | >2.21 × 10−24 |
Polycarbonate | PC | 0.142287 | 1.1231 | 3.5010 | 4.29 × 10−24 |
Polyetheretherkeytone | PEEK | 0.107764 | 1.2259 | 3.4821 | 2.99 × 10−24 |
Polyethylene terephthalate | PET (Mylar) | 0.125187 | 1.3925 | 3.5432 | 3.01 × 10−24 |
Chlorotrifluoroethylene | CTFE (Kel-f) | 0.052949 | 2.1327 | 3.5452 | 8.31 × 10−25 |
Ethylene-chlorotrifluoroethylene | ECTFE (Halar) | 0.088869 | 1.6761 | 3.5103 | 1.79 × 10−24 |
Tetrafluorethylene-ethylene copolymer | ETFE (Tefzel) | 0.049108 | 1.7397 | 3.4854 | 9.61 × 10−25 |
Fluorinated ethylene propylene | FEP | 0.012479 | 2.1443 | 3.4468 | 2.00 × 10−25 |
Polytetrafluoroethylene | PTFE | 0.008938 | 2.1503 | 3.4841 | 1.42 × 10−25 |
Perfluoroalkoxy copolymer resin | PFA | 0.010785 | 2.1383 | 3.4570 | 1.73 × 10−25 |
Amorphous Fluoropolymer | AF | 0.012352 | 2.1463 | 3.4544 | 1.98 × 10−25 |
Polyvinylidene fluoride | PVDF (Kynar) | 0.066860 | 1.7623 | 3.4993 | 1.29 × 10−24 |
Impact Sites | Incident Angle φ, ° | Incident Angle θ, ° | Impact Interaction Results |
---|---|---|---|
Ring hollow | 0°, 30° | 45°, 60°, 75° | Rebounded |
C–C bond | 0°, 30°,90° | 45°, 60°, 75° | Adsorbed |
C atom | 0°, 90° | 45°, 60°, 75° | Rebounded first and then adsorbed on C–C bond |
30° | 45°, 60°, 75° | Rebounded |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weerasinghe, J.; Prasad, K.; Mathew, J.; Trifoni, E.; Baranov, O.; Levchenko, I.; Bazaka, K. Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites. Nanomaterials 2023, 13, 1763. https://doi.org/10.3390/nano13111763
Weerasinghe J, Prasad K, Mathew J, Trifoni E, Baranov O, Levchenko I, Bazaka K. Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites. Nanomaterials. 2023; 13(11):1763. https://doi.org/10.3390/nano13111763
Chicago/Turabian StyleWeerasinghe, Janith, Karthika Prasad, Joice Mathew, Eduardo Trifoni, Oleg Baranov, Igor Levchenko, and Kateryna Bazaka. 2023. "Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites" Nanomaterials 13, no. 11: 1763. https://doi.org/10.3390/nano13111763
APA StyleWeerasinghe, J., Prasad, K., Mathew, J., Trifoni, E., Baranov, O., Levchenko, I., & Bazaka, K. (2023). Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites. Nanomaterials, 13(11), 1763. https://doi.org/10.3390/nano13111763