High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis of the Si Cap Film Based on RTCVD
3.2. Effect of the Laser Annealing Process on the Nanosheet with the RC Channel
3.3. Crystal Structure Analysis of the Vertical Nanosheet before Laser Annealing
3.4. Crystal Structure Analysis of the Vertical Nanosheet after Laser Annealing
3.5. Electrical Properties of the "Exposed-Top" RC-VCNFET Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S. Review of Modern Field Effect Transistor Technologies for Scaling. J. Phys. Conf. Ser. 2020, 1617, 012054. [Google Scholar] [CrossRef]
- Bae, G.; Bae, D.-I.; Kang, M.; Hwang, S.M.; Kim, S.S.; Seo, B.; Kwon, T.Y.; Lee, T.J.; Moon, C.; Choi, Y.M.; et al. 3 nm GAA Technology Featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 28.7.1–28.7.4. [Google Scholar]
- Song, T.; Kim, H.; Rim, W.; Jung, H.; Park, C.; Lee, I.; Baek, S.; Jung, J. A 3-Nm Gate-All-Around SRAM Featuring an Adaptive Dual-Bitline and an Adaptive Cell-Power Assist Circuit. IEEE J. Solid-State Circuits 2022, 57, 236–244. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Dewey, G.; Mannebach, E.; Phan, A.; Morrow, P.; Rachmady, W.; Tung, I.-C.; Thomas, N.; Alaan, U.; Paul, R.; et al. 3-D Self-Aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 20.6.1–20.6.4. [Google Scholar]
- Liu, M. 1.1 Unleashing the Future of Innovation. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 9–16. [Google Scholar]
- Park, S.-K. Technology Scaling Challenge and Future Prospects of DRAM and NAND Flash Memory. In Proceedings of the 2015 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 17–20 May 2015; pp. 1–4. [Google Scholar]
- Yang, C.-M.; Wei, C.-K.; Chang, Y.J.; Wu, T.-C.; Chen, H.-P.; Lai, C.-S. Suppression of Row Hammer Effect by Doping Profile Modification in Saddle-Fin Array Devices for Sub-30-Nm DRAM Technology. IEEE Trans. Device Mater. Reliab. 2016, 16, 685–687. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, S.-Y.; Hwang, K.-M.; Jin, I.K.; Hur, J.; Kim, D.-H.; Son, J.W.; Kim, W.-K.; Choi, Y.-K. A Comprehensive Study of a Single-Transistor Latch in Vertical Pillar-Type FETs with Asymmetric Source and Drain. IEEE Trans. Electron Devices 2018, 65, 5208–5212. [Google Scholar] [CrossRef]
- Cho, Y.S.; Choi, P.H.; Kim, K.H.; Park, J.M.; Hwang, Y.S.; Hong, H.S.; Lee, K.P.; Choi, B.D. Stretched Tunnelling Body Contact Structure for Suppressing the FBE in a Vertical Cell DRAM. Electron. Lett. 2019, 55, 1252–1253. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, H.; Jung, K.; Kim, B.; Hwang, Y.; Hong, H.; Choi, B. Suppression of the Floating-Body Effect of Vertical-Cell DRAM with the Buried Body Engineering Method. IEEE Trans. Electron Devices 2018, 65, 3237–3242. [Google Scholar] [CrossRef]
- Cho, Y.; Choi, P.; Hyeon, Y.; Song, J.; Hwang, Y.; Choi, B. Novel Band-to-Band Tunneling Body Contact (BTBC) Structure to Suppress the Floating-Body Effect in a Vertical-Cell DRAM. IEEE Electron Device Lett. 2018, 39, 1860–1863. [Google Scholar] [CrossRef]
- Jagannathan, H.; Anderson, B.; Sohn, C.-W.; Tsutsui, G.; Strane, J.; Xie, R.; Fan, S.; Kim, K.I.; Song, S.; Sieg, S. Vertical-Transport Nanosheet Technology for CMOS Scaling beyond Lateral-Transport Devices. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; p. 26-1. [Google Scholar]
- Tsutsui, G.; Song, S.; Strane, J.; Xie, R.; Qin, L.; Zhang, C.; Schmidt, D.; Fan, S.; Hong, B.; Jung, Y. Hardware Based Performance Assessment of Vertical-Transport Nanosheet Technology. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2022. [Google Scholar]
- Chang, C.-H.; Chang, V.S.; Pan, K.H.; Lai, K.T.; Lu, J.H.; Ng, J.A.; Chen, C.Y.; Wu, B.F.; Lin, C.J.; Liang, C.S. Critical Process Features Enabling Aggressive Contacted Gate Pitch Scaling for 3nm CMOS Technology and Beyond. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 27.1.1–27.1.4. [Google Scholar]
- Yin, X.; Zhang, Y.; Zhu, H.; Wang, G.L.; Li, J.J.; Du, A.Y.; Li, C.; Zhao, L.H.; Huang, W.X.; Yang, H. Vertical Sandwich Gate-All-around Field-Effect Transistors with Self-Aligned High-k Metal Gates and Small Effective-Gate-Length Variation. IEEE Electron Device Lett. 2019, 41, 8–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, X.; Yin, X.; Zhu, H.; Yang, H.; Wang, G.L.; Li, J.J.; Du, A.Y.; Li, C.; Huang, W.X. Vertical Sandwich GAA FETs with Self-Aligned High-k Metal Gate Made by Quasi Atomic Layer Etching Process. IEEE Trans. Electron Devices 2021, 68, 2604–2610. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Zhang, Y.; Wang, Q.; Yin, X.; Li, J.; Wang, G.; Kong, Z.; Ai, X.; Xie, L. First Demonstration of Novel Vertical Gate-All-around Field-Effect-Transistors Featured by Self-Aligned and Replaced High-κ Metal Gates. Nano Lett. 2021, 21, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.R.; Wang, Q.; Zhu, H.L.; Chen, Z.; Zhang, Y.K.; Li, J.J.; Zhou, N.; Gao, J.F.; Ai, X.Z.; Lu, S.S.; et al. Vertical C-Shaped-Channel Nanosheet FETs Featured with Precise Control of Both Channel-Thickness and Gate-Length. IEEE Electron Device Lett. 2022, 43, 1183–1186. [Google Scholar] [CrossRef]
- Xiao, Z.R.; Zhu, H.L.; Wang, Q.; Chen, Z.; Liu, Z.Y.; Zhang, Y.K.; Yan, Z.J.; Shi, Y.F.; Zhou, N.; Li, J.J.; et al. Vertical N-Type and P-Type Nanosheet FETs with C-Shaped Channel. IEEE Trans. Electron Devices 2023, 70, 1380–1385. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Hu, H.-W.; Hsieh, P.-Y.; Chung, H.-T.; Chang, S.-J.; Liu, J.-H.; Huang, P.-T.; Yang, C.-C.; Shen, C.-H.; Shieh, J.-M. Single-Crystal Islands (SCI) for Monolithic 3-D and Back-End-of-Line FinFET Circuits. IEEE Trans. Electron Devices 2021, 68, 5257–5262. [Google Scholar] [CrossRef]
- Son, Y.-I.; Shin, J. Numerical Study on the Laser Annealing of Silicon Used in Advanced V-NAND Device. Materials 2022, 15, 4201. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhu, H.; Wang, G.; Wang, Q.; Xiao, Z.; Zhang, Y.; Liu, J.; Lu, S.; Du, Y.; Yu, J.; et al. High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale. Nanomaterials 2023, 13, 1867. https://doi.org/10.3390/nano13121867
Chen Z, Zhu H, Wang G, Wang Q, Xiao Z, Zhang Y, Liu J, Lu S, Du Y, Yu J, et al. High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale. Nanomaterials. 2023; 13(12):1867. https://doi.org/10.3390/nano13121867
Chicago/Turabian StyleChen, Zhuo, Huilong Zhu, Guilei Wang, Qi Wang, Zhongrui Xiao, Yongkui Zhang, Jinbiao Liu, Shunshun Lu, Yong Du, Jiahan Yu, and et al. 2023. "High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale" Nanomaterials 13, no. 12: 1867. https://doi.org/10.3390/nano13121867
APA StyleChen, Z., Zhu, H., Wang, G., Wang, Q., Xiao, Z., Zhang, Y., Liu, J., Lu, S., Du, Y., Yu, J., Xiong, W., Kong, Z., Du, A., Yan, Z., & Zheng, Y. (2023). High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale. Nanomaterials, 13(12), 1867. https://doi.org/10.3390/nano13121867