Comprehensive Investigation of Constant Voltage Stress Time-Dependent Breakdown and Cycle-to-Breakdown Reliability in Y-Doped and Si-Doped HfO2 Metal-Ferroelectric-Metal Memory
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Song, C.M.; Kwon, H.J. Ferroelectrics based on HfO2 film. Electronics 2021, 10, 2759. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Cheema, S.S.; Kwon, D.; Shanker, N.; Reis, R.D.; Hsu, S.-L.; Xiao, J.; Zhang, H.; Wagner, R.; Datar, A.; McCarter, M.R.; et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, W. Challenges and Applications of Emerging Nonvolatile Memory Devices. Electronics 2020, 9, 1029. [Google Scholar] [CrossRef]
- Salahuddin, S.; Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 2008, 8, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-P.; Lin, Y.-X.; Huang, Y.-K.; Chan, C.-Y.; Wu, Y.-H. Junctionless Poly-GeSn Ferroelectric Thin-Film Transistors with Improved Reliability by Interface Engineering for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2019, 12, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- MKim, M.K.; Lee, J.S. Ferroelectric analog synaptic transistors. Nano Lett. 2019, 19, 2044–2050. [Google Scholar] [CrossRef]
- Jerry, M.; Chen, P.Y.; Zhang, J.; Sharma, P.; Ni, K.; Yu, S.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 6.2.1–6.2.4. [Google Scholar] [CrossRef]
- Kimura, H.; Hanyu, T.; Kameyama, M.; Fujimori, Y.; Nakamura, T.; Takasu, H. Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI. IEEE J. Solid-State Circuits 2004, 39, 919–926. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, K.C.; Wu, C.H.; Chang, T.Y.; Ronchi, N.; Banerjee, K.; Van den Bosch, G.; Van Houdt, J.; Wu, T.L. Demonstration of 64 Conductance States and Large Dynamic Range in Si-doped HfO2 FeFETs under Neuromorphic Computing Operations. In Proceedings of the 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 18–21 April 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Chen, Y.H.; Su, C.J.; Hu, C.; Wu, T.L. Effects of Annealing on Ferroelectric Hafnium Zirconium Oxide-Based Transistor Technology. IEEE Electron Device Lett. 2019, 40, 467–470. [Google Scholar] [CrossRef]
- Cao, R.; Wang, Y.; Zhao, S.; Yang, Y.; Zhao, X.; Wang, W.; Zhang, X.; Lv, H.; Liu, Q.; Liu, M. Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films. IEEE Electron Device Lett. 2018, 39, 1207–1210. [Google Scholar] [CrossRef]
- Ronchi, N.; Ragnarsson, L.Å.; Breuil, L.; Banerjee, K.; McMitchell, S.R.C.; O’Sullivan, B.; Milenin, A.; Kundu, S.; Pak, M.; Van Houdt, J. Ferroelectric FET with Gd-doped HfO2: A Step Towards Better Uniformity and Improved Memory Performance. In Proceedings of the 2021 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 13 June 2021; pp. 1–2. [Google Scholar]
- Skopina, E.V.; Guillaume, N.; Alrifai, L.; Gonon, P.; Bsiesya, A. Sub-10-nm ferroelectric Gd-doped HfO2 layers. Appl. Phys. Lett. 2022, 120, 172901. [Google Scholar] [CrossRef]
- Tashiro, Y.; Shimizu, T.; Mimura, T.; Funakubo, H. Comprehensive Study on the Kinetic Formation of the Orthorhombic Ferroelectric Phase in Epitaxial Y-Doped Ferroelectric HfO2 Thin Films. ACS Appl. Electron. Mater. 2021, 3, 3123–3130. [Google Scholar] [CrossRef]
- Li, S.; Zhou, D.; Shi, Z.; Hoffmann, M.; Mikolajick, T.; Schroeder, U. Temperature-Dependent Subcycling Behavior of Si-Doped HfO2 Ferroelectric Thin Films. ACS Appl. Electron. Mater. 2021, 3, 2415–2422. [Google Scholar] [CrossRef]
- Wu, C.-H.; Wang, K.-C.; Wang, Y.-Y.; Hu, C.; Su, C.-J.; Wu, T.-L. Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric -Insulator Technologies by Using a Strained TiN Electrode. Nanomaterials 2022, 12, 468. [Google Scholar] [CrossRef]
- Wu, C.-H.; Ronchi, N.; Wang, K.-C.; Wang, Y.-Y.; McMitchel, S.; Banerjee, K.; Van den Bosch, G.; Van Houdt, J.; Wu, T.-L. Impacts of Pulsing Schemes on the Endurance of Ferroelectric Metal–Ferroelectric–Insulator–Semiconductor Capacitors. IEEE J. Electron Devices Soc. 2022, 10, 109–114. [Google Scholar] [CrossRef]
- Popovici, M.I.; Bizindavyi, J.; Favia, P.; Clima, S.; Alam, M.N.K.; Ramachandran, R.K.; Walke, A.M.; Celano, U.; Leonhardt, A.; Mukherjee, S.; et al. High performance La-doped HZO based ferroelectric capacitors by interfacial engineering. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022. [Google Scholar]
- Tan, A.J.; Liao, Y.-H.; Wang, L.-C.; Shanker, N.; Bae, J.-H.; Hu, C.; Salahuddin, S. Ferroelectric HfO2 Memory Transistors with High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles. IEEE Electron Device Lett. 2021, 42, 994–997. [Google Scholar] [CrossRef]
- Zagni, N.; Puglisi, F.M.; Pavan, P.; Alam, M.A. Reliability of HfO2-Based Ferroelectric FETs: A Critical Review of Current and Future Challenges. Proc. IEEE 2023, 111, 158–184. [Google Scholar] [CrossRef]
- Ronchi, N.; Ragnarsson, L.Å.; Celano, U.; Kaczer, B.; Kaczmarek, K.; Banerjee, K.; McMitchell, S.R.C.; Van Houdt, J. A comprehensive variability study of doped HfO2 FeFET for memory applications. In Proceedings of the 2022 IEEE International Memory Workshop (IMW), Dresden, Germany, 15–18 May 2022. [Google Scholar]
- Wei, X.K.; Sluka, T.; Fraygola, B.; Feigl, L.; Du, H.; Jin, L.; Setter, N. Controlled charging of ferroelastic domain walls in oxide ferroelectrics. ACS Appl. Mater. Interfaces 2017, 9, 6539–6546. [Google Scholar] [CrossRef] [PubMed]
Dopant in Ferroelectric Layer | Domain Size (nm) | Doping Concentration | |
---|---|---|---|
Sample A | Y | 5.6 | 2.9% |
Sample B | Si | 12.5 | 2.5% |
10-year Operation Voltage Based on CVS TDDB | 106-Cycling Operation Voltage Based on Cycle-to-Breakdown | |
---|---|---|
Sample A | 2.24 | 3.45 |
Sample B | 2.62 | 3.79 |
Lifetime of Cycle-to-BD @3V (s) | Lifetime of TDDB @3V (s) | |
---|---|---|
Sample A | 203 | 515 |
Sample B | 12,170 | 146,058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-Y.; Wang, K.-C.; Liu, H.-Y.; Hseun, J.-H.; Peng, W.-C.; Ronchi, N.; Celano, U.; Banerjee, K.; Van Houdt, J.; Wu, T.-L. Comprehensive Investigation of Constant Voltage Stress Time-Dependent Breakdown and Cycle-to-Breakdown Reliability in Y-Doped and Si-Doped HfO2 Metal-Ferroelectric-Metal Memory. Nanomaterials 2023, 13, 2104. https://doi.org/10.3390/nano13142104
Chang T-Y, Wang K-C, Liu H-Y, Hseun J-H, Peng W-C, Ronchi N, Celano U, Banerjee K, Van Houdt J, Wu T-L. Comprehensive Investigation of Constant Voltage Stress Time-Dependent Breakdown and Cycle-to-Breakdown Reliability in Y-Doped and Si-Doped HfO2 Metal-Ferroelectric-Metal Memory. Nanomaterials. 2023; 13(14):2104. https://doi.org/10.3390/nano13142104
Chicago/Turabian StyleChang, Ting-Yu, Kuan-Chi Wang, Hsien-Yang Liu, Jing-Hua Hseun, Wei-Cheng Peng, Nicolò Ronchi, Umberto Celano, Kaustuv Banerjee, Jan Van Houdt, and Tian-Li Wu. 2023. "Comprehensive Investigation of Constant Voltage Stress Time-Dependent Breakdown and Cycle-to-Breakdown Reliability in Y-Doped and Si-Doped HfO2 Metal-Ferroelectric-Metal Memory" Nanomaterials 13, no. 14: 2104. https://doi.org/10.3390/nano13142104
APA StyleChang, T. -Y., Wang, K. -C., Liu, H. -Y., Hseun, J. -H., Peng, W. -C., Ronchi, N., Celano, U., Banerjee, K., Van Houdt, J., & Wu, T. -L. (2023). Comprehensive Investigation of Constant Voltage Stress Time-Dependent Breakdown and Cycle-to-Breakdown Reliability in Y-Doped and Si-Doped HfO2 Metal-Ferroelectric-Metal Memory. Nanomaterials, 13(14), 2104. https://doi.org/10.3390/nano13142104