A Wrinkling and Etching-Assisted Regrowth Strategy for Large-Area Bilayer Graphene Preparation on Cu
Abstract
:1. Introduction
2. Experiments
2.1. G-rW-rE-rG CVD Growth of Large-Area Bilayer Graphene
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487. [Google Scholar] [CrossRef]
- Lu, X.B.; Stepanov, P.; Yang, W.; Xie, M.; Efetov, D.K.; Aamir, M.A.; Das, I.; Uegell, C.; Watanabe, K.; Taniguchi, T.; et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Wang, Z.; Watanabe, K.; Taniguchi, T.; Vafek, O.; Li, J.I.A. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 2021, 371, 1261–1265. [Google Scholar] [CrossRef]
- Rickhaus, P.; De Vries, F.; Zhu, J.; Portoles, E.; Zheng, G.; Masseroni, M.; Kurzmann, A.; Taniguchi, T.; Watanabe, K.; Macdonald, A.; et al. Correlated electron-hole state in twisted double-bilayer graphene. Science 2021, 373, 1257–1260. [Google Scholar] [CrossRef]
- Wang, M.H.; Huang, M.; Luo, D.; Li, Y.Q.; Choe, M.; Seong, W.K.; Kim, M.; Jin, S.; Wang, M.; Chatterjee, S.; et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.F.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Z.; Zhang, Z.H.; Dong, J.C.; Yi, D.; Niu, J.J.; Wu, M.H.; Lin, L.; Yin, R.K.; Li, M.Q.; Zhou, J.Y.; et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Z.H.; Qiao, R.X.; Zhang, Z.B.; Liu, F.; Zhou, Z.Q.; Shang, N.Z.; Fang, H.W.; Wang, M.X.; Liu, Z.K.; et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 2022, 21, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Peng, H.; Liu, Z.F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, P.; Li, Z.; Yang, J. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 2011, 115, 17782–17787. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Lv, C.Y.; Wei, H.R.; Xu, W.P.; Wang, R.; Fan, J.; Wu, X.Z. High mobility and excellent thermoelectric performance monolayer ZnX2Z4 (X = In, Al, Ga; Z = S, Se, Te) materials. Phys. Chem. Chem. Phys. 2023, 25, 10335. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.Y.; Mitchell, I.; Kim, S.; An, H.; Ding, F. Multilayer graphene sunk growth on Cu(111) surface. Carbon 2022, 199, 233–240. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Peng, H.; Zhou, Y.; Li, H.; Liu, Z. Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Lett. 2011, 11, 1106–1110. [Google Scholar] [CrossRef]
- Han, J.; Lee, J.Y.; Yeo, J.S. Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon 2016, 105, 205–213. [Google Scholar] [CrossRef]
- Liu, W.; Kraemer, S.; Sarkar, D.; Li, H.; Ajayan, P.M.; Banerjee, K. Controllable and Rapid Synthesis of High-Quality and Large-AreaBernal Stacked Bilayer Graphene Using Chemical Vapor Deposition. Chem. Mater. 2014, 26, 907–915. [Google Scholar] [CrossRef]
- Yang, C.; Wu, T.; Wang, H.; Zhang, G.; Sun, J.; Lu, G.; Niu, T.; Li, A.; Xie, X.; Jiang, M. Copper-Vapor-Assisted Rapid Synthesis of Large AB-Stacked Bilayer Graphene Domains on Cu-Ni Alloy. Small 2016, 12, 2009–2013. [Google Scholar] [CrossRef]
- Liu, B.; Sheng, Y.C.; Huang, S.Y.; Guo, Z.X.; Ba, K.; Yan, H.G.; Bao, W.Z.; Sun, Z.Z. Layer-by-layer AB-stacked bilayer graphene growth through an asymmetric oxygen gateway. Chem. Mater. 2019, 31, 6105–6109. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, R.; Zhao, P.; An, H.; Lnoue, T.; Chiashi, S.; Maruyama, S. Chemical vapor deposition growth of large single-crystal bernalstackedbilayer graphene from ethanol. Carbon 2016, 107, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.F.; Wang, L.; Liu, Y.Y.; Chen, H.; Cheng, X.H. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Kim, S.; Chen, X.; Einarsson, E.; Wang, M.; Song, Y.N.; Wang, H.T.; Chiashi, S.; Xiang, R. Equilibrium ChemicalVapor Deposition Growth of Bernal-Stacked Bilayer Graphene. ACS Nano 2014, 8, 11631–11638. [Google Scholar] [CrossRef]
- Qi, Z.K.; Shi, H.H.; Zhao, M.X.; Jin, H.C.; Jin, S.; Kong, X.H.; Ruoff, R.S.; Qin, S.Y.; Xue, J.M.; Ji, H.X. Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene by Edge-Selective Etching with H2O. Chem. Mater. 2018, 30, 7852–7859. [Google Scholar] [CrossRef]
- Li, Q.Y.; Li, F.; Li, Y.; Du, Y.P.; Shih, T.M.; Kan, E. Hydrogen induced etching features of wrinkled graphene domains. Nanomaterials 2019, 9, 930. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Y.; Chou, H.; Zhong, J.H.; Liu, J.Y.; Dolocan, A.; Zhang, J.Y.; Zhou, Y.H.; Ruoff, R.S.; Chen, S.S.; Cai, W.W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490. [Google Scholar] [CrossRef]
- Deng, S.K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Seo, J.; Lee, J.; Jang, A.R.; Choi, Y.; Kim, U.; Shin, H.S.; Park, H. Study of cooling rate on the growth of graphene via chemical vapor deposition. Chem. Mater. 2017, 29, 4202–4208. [Google Scholar] [CrossRef]
- Kim, H.; Mattevi, C.; Calvo, M.R.; Oberg, J.C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C.F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614–3623. [Google Scholar] [CrossRef] [PubMed]
- Loginova, E.; Bartelt, N.C.; Feibelman, P.J.; Mccarty, K.F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, S.; Kim, Y.; Kim, J.G.; Min, B.K.; Lee, K.; John, P. The seeded growth of graphene. Sci. Rep. 2014, 4, 5682. [Google Scholar] [CrossRef]
- Wu, W.; Jauregui, L.A.; Su, Z.H.; Liu, Z.H.; Bao, J.M.; Chen, Y.P.; Yu, Q.K. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 2011, 23, 4898–4903. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Zhang, C.K.; Lin, W.Y.; Huang, Z.Y.; Zhang, L.L.; Li, H.Y.; Chen, X.P.; Cai, W.W.; Ruoff, R.S.; Chen, S.S. Controllable seeding of single crystal graphene islands from graphene oxide flakes. Carbon 2014, 79, 406–412. [Google Scholar] [CrossRef]
- Sun, L.; Lin, L.; Zhang, J.C.; Wang, H.; Peng, H.L.; Liu, Z.F. Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Res. 2017, 10, 355–363. [Google Scholar] [CrossRef]
- Fang, W.J.; Hsu, A.L.; Caudillo, R.; Song, Y.; Birdwell, A.G.; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M.S.; et al. Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy. Nano Lett. 2013, 13, 1541–1548. [Google Scholar] [CrossRef]
- Ma, T.; Ren, W.C.; Liu, Z.B.; Huang, L.; Ma, L.P.; Zhang, Z.Y.; Peng, L.M.; Cheng, H.M. Repeated Growth-Etching-Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano 2014, 8, 12806–12813. [Google Scholar] [CrossRef]
- Liu, L.X.; Zhou, H.L.; Cheng, R.; Yu, W.J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X.F. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.C.; Chung, W.L.; Woon, W.Y. Nucleation and growth kinetics of multi-layered graphene on copper substrate. Carbon 2018, 135, 118–124. [Google Scholar] [CrossRef]
- Chu, C.M.; Woon, W.Y. Growth of twisted bilayer graphene through two-stage chemical vapor deposition. Nanotechnology 2020, 31, 435603. [Google Scholar] [CrossRef]
- Shen, C.Q.; Yan, X.Z.; Qing, F.Z.; Niu, X.B.; Stehle, R.; Mao, S.S.; Zhang, W.L.; Li, X.S. Criteria for the growth of large-area adlayer-free monolayer graphene fifilms by chemical vapor deposition. J. Mater. 2019, 5, 463–470. [Google Scholar]
- Luo, B.; Chen, B.Y.; Wang, A.; Geng, D.C.; Xu, J.; Wang, H.P.; Zhang, Z.Y.; Peng, L.M.; Xu, Z.P.; Yu, G. Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. J. Mater. Chem. C 2016, 4, 7464–7471. [Google Scholar] [CrossRef]
- Zhang, J.C.; Liu, X.T.; Zhang, M.Q.; Zhang, R.; Ta, H.Q.; Sun, J.B.; Wang, W.D.; Zhu, W.Q.; Fang, T.T.; Jia, K.C.; et al. Fast synthesis of large-area bilayer graphene film on Cu. Nat. Commun. 2023, 14, 3199. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, T.; Li, Y.; Li, F.; Zhao, Y.; Huang, S. A Wrinkling and Etching-Assisted Regrowth Strategy for Large-Area Bilayer Graphene Preparation on Cu. Nanomaterials 2023, 13, 2059. https://doi.org/10.3390/nano13142059
Li Q, Liu T, Li Y, Li F, Zhao Y, Huang S. A Wrinkling and Etching-Assisted Regrowth Strategy for Large-Area Bilayer Graphene Preparation on Cu. Nanomaterials. 2023; 13(14):2059. https://doi.org/10.3390/nano13142059
Chicago/Turabian StyleLi, Qiongyu, Tongzhi Liu, You Li, Fang Li, Yanshuai Zhao, and Shihao Huang. 2023. "A Wrinkling and Etching-Assisted Regrowth Strategy for Large-Area Bilayer Graphene Preparation on Cu" Nanomaterials 13, no. 14: 2059. https://doi.org/10.3390/nano13142059
APA StyleLi, Q., Liu, T., Li, Y., Li, F., Zhao, Y., & Huang, S. (2023). A Wrinkling and Etching-Assisted Regrowth Strategy for Large-Area Bilayer Graphene Preparation on Cu. Nanomaterials, 13(14), 2059. https://doi.org/10.3390/nano13142059