A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of VANS-MoS2-CNTs
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussions
3.1. Structural Characterization
3.2. Formation Mechanism
3.3. Electrochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Yu, C.; Wei, C.; Jiang, Z.; Zhang, Z.; Peng, L.; Cheng, S.; Xie, J. Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes. Energy Mater. Adv. 2023, 4, 19. [Google Scholar] [CrossRef]
- Chae, S.; Choi, S.H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 110–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Yan, L.; Luo, H.; Guo, S. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 2016, 28, 7580–7602. [Google Scholar] [CrossRef]
- Kulkarni, P.; Nataraj, S.K.; Balakrishna, R.G.; Nagaraju, D.H.; Reddy, M.V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 2017, 5, 22040–22094. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Z.; Wang, Z.; Wang, Y.; Xu, L.; Wang, Q.; Liu, W. One-step hydrothermal synthesis of P25@few layered MoS2 nanosheets toward enhanced Bi-catalytic activities: Photocatalysis and electrocatalysis. Nanomaterials 2019, 9, 1636. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Chen, C.; Yang, D.; Hu, W.; Dong, F.S. Defect-rich ultrathin 2D MoS2: The role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis. Appl. Catal. B Environ. 2021, 299, 120664. [Google Scholar] [CrossRef]
- Mohan, M.; Shetti, N.P.; Aminabhavi, T.M. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 2023, 58, 106321. [Google Scholar] [CrossRef]
- Mahajan, H.; Mohanan, K.U.; Cho, S. Facile synthesis of biocarbon-based MoS2 composite for high-performance supercapacitor application. Nano Lett. 2022, 22, 8161–8167. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Cui, J.; Yao, S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Quattrocchi, E.; Ciucci, F.; Kim, J.K. Dual-phase MoS2 as a high-performance sodium-ion battery anode. J. Mater. Chem. A 2020, 8, 2114–2122. [Google Scholar] [CrossRef]
- Das, S.; Swain, G.; Parida, K. One step towards the 1T/2H-MoS2 mixed phase: A journey from synthesis to application. Mater. Chem. Front. 2021, 5, 2143–2172. [Google Scholar] [CrossRef]
- Tayebi, M.; Masoumi, Z.; Kolaei, M.; Tayyebi, A.; Tayebi, M.; Seo, B.; Lim, C.S.; Kim, H.G.; Lee, B.K. Highly efficient and stable WO3/MoS2-MoOX photoanode for photoelectrochemical hydrogen production; a collaborative approach of facet engineering and P-N junction. Chem. Eng. J. 2022, 446, 136830. [Google Scholar] [CrossRef]
- Masoumi, Z.; Tayebi, M.; Lee, B.K. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe2O3/MoS2 photoanode. Ultrason. Sonochem. 2021, 72, 105403. [Google Scholar] [CrossRef]
- Masoumi, Z.; Tayebi, M.; Kolaei, M.; Lee, B.K. Unified surface modification by double heterojunction of MoS2 nanosheets and BiVO4 nanoparticles to enhance the photoelectrochemical water splitting of hematite photoanode. J. Alloys Compd. 2022, 890, 161802. [Google Scholar] [CrossRef]
- Bondarev, A.; Ponomarev, I.; Muydinov, R.; Polcar, T. Friend or foe? Revising the role of oxygen in the tribological performance of solid lubricant MoS2. ACS Appl. Mater. Interfaces 2022, 14, 55051–55061. [Google Scholar] [CrossRef]
- Faizan, M.; Hussain, S.; Islam, M.; Kim, J.Y.; Han, D.; Bae, J.H.; Vikraman, D.; Ali, B.; Abbas, S.; Kim, H.S.; et al. MoO3@MoS2 core-shell structured hybrid anode materials for lithium-ion batteries. Nanomaterials 2022, 12, 2008. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, Y.; Lv, Z.; Wei, J.; Zhang, Y.; Wang, R.; Zhang, W.; Xia, H.; Ge, M.; Chen, X. Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage. Angew. Chem. Int. Ed. 2018, 57, 3656–3660. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Mukhopadhyay, A.; Ma, Y.; Yang, L.; Hafez, A.M.; Zhu, H.L. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702779. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhu, Y.; Zhang, Y.; Yang, M.; Li, S.; Suo, K.; Li, K. N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries. Nanotechnology 2022, 33, 235703. [Google Scholar] [CrossRef]
- Cao, M.; Feng, Y.; Zhang, P.; Yang, L.; Gu, X.; Yao, J. Synthesis of MoS2 nanotube using a sacrificial template method as advanced anode material for lithium-ion batteries. J. Alloys Compd. 2022, 907, 164499. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Yang, H.; Chen, Z.; Lin, J.; Shen, Z.X. Active sites-enriched hierarchical MoS2 nanotubes: Highly active and stable architecture for boosting hydrogen evolution and lithium storage. J. Mater. Chem. A 2016, 4, 7565–7572. [Google Scholar] [CrossRef] [Green Version]
- Baheri, Y.T.; Hedayati, M.A.; Maleki, M.; Karimian, H. A vapor-liquid-solid mechanism for in-situ deposition of ultra-small hollow MoS2 nanoparticles in N-doped carbon foam as an anode of lithium-ion batteries. J. Energy Storage 2023, 68, 107682. [Google Scholar] [CrossRef]
- Mi, Z.; Hu, D.; Lin, J.; Pan, H.; Chen, Z.; Li, Y.; Liu, Q.; Zhu, S. Anchoring nanoarchitectonics of 1T’-MoS2 nanoflakes on holey graphene sheets for lithium-ion batteries with outstanding high-rate performance. Electrochim. Acta 2022, 403, 139711. [Google Scholar] [CrossRef]
- Liu, H.; Su, D.; Zhou, R.; Sun, B.; Wang, G.; Qiao, S.Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975. [Google Scholar] [CrossRef]
- Geng, X.M.; Zhang, Y.L.; Han, Y.; Li, J.X.; Yang, L.; Benamara, M.; Chen, L.; Zhu, H.L. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 2017, 17, 1825–1833. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, D.; Kang, J.; Feng, J.; Bechtel, H.A.; Wang, L.W.; Cairns, E.J.; Guo, J.H. Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2018, 18, 1466–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, X.M.; Jiao, Y.C.; Han, Y.; Mukhopadhyay, A.; Yang, L.; Zhu, H.L. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702998. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Cao, T.; He, F.; Shi, C.; He, C.; Ma, L.; Li, Q.; Li, J.; Zhao, N. Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 33, 247–256. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, X.; Liu, B.; Fu, C.; Zhou, L.; Liu, Y.; Wu, W.; Xiong, C.; Liu, Z.; Yang, Q. Few-layer MoS2 nanosheets anchored by CNT network for superior lithium storage. Electrochim. Acta 2020, 331, 135392. [Google Scholar] [CrossRef]
- Rana, M.; Boaretto, N.; Mikhalchan, A.; Santos, M.V.; Marcilla, R.; Vilatela, J.J. Composite fabrics of conformal MoS2 grown on CNT Fibers: Tough battery anodes without metals or binders. ACS Appl. Energy Mater. 2021, 4, 5668–5676. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Jian, Z.; Li, H.; Xing, Y.; Zhang, S. Rational design of a 3D MoS2/dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. J. Mater. Chem. A 2018, 6, 13797–13805. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Yang, S.; Wang, F.; Zhuang, X.; Müllen, K.; Feng, X. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1702254. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, S.; Zhang, P.; Liu, J.; Zhou, C.; Zhou, J.J.; Xu, L.; Chen, F.; Chen, L. Interlayer expanded MoS2/nitrogen-doped carbon hydrangea nanoflowers assembled on nitrogen-doped three-dimensional graphene for high-performance lithium and sodium storage. ACS Appl. Energy Mater. 2021, 4, 5775–5786. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Zeng, G.; Jia, J.; Zhan, H.; Wen, Z. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 2018, 12, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, P.; Huang, X.; Tang, Y.; Wang, H. Reviving bulky MoS2 as an advanced anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10988–10997. [Google Scholar] [CrossRef]
- Xu, X.; Fan, Z.; Yu, X.; Ding, S.; Yu, D.; Lou, X.W. A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv. Energy Mater. 2014, 4, 1400902. [Google Scholar] [CrossRef]
- Wu, C.; Ou, J.Z.; He, F.; Ding, J.; Luo, W.; Wu, M.; Zhang, H. Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 2019, 65, 104061. [Google Scholar] [CrossRef]
- Wang, S.; Guan, B.Y.; Yu, L.; Lou, X.W. Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 2017, 29, 1702724. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, X.; Yang, X.Q.; Xun, S.; Liu, G.; Koech, P.K.; Liu, J.; Lemmon, J.P. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 2011, 21, 2840–2846. [Google Scholar] [CrossRef]
- Fang, Y.; Lv, Y.; Gong, F.; Elzatahry, A.A.; Zheng, G.; Zhao, D. Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 2016, 28, 9385–9390. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, H.; Ma, C.; Chen, J.; Wang, Z.; Zheng, W. MoS2 nanotubes via ionic-liquid-assisted assembly of MoS2 nanosheets for lithium storage. ACS Appl. Nano Mater. 2021, 4, 3397–3405. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, Y.; Chen, H.; Luo, X.; Liu, X. The facile synthesis of hollow CuS microspheres assembled from nanosheets for Li-ion storage and photocatalytic applications. Nanomaterials 2023, 13, 1505. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Tan, H.; Fan, X.; Huang, K. MoS2 nanosheets/graphitized porous carbon nanofiber composite: A dual-functional host for high-performance lithium-sulfur batteries. J. Alloys Compd. 2020, 820, 153144. [Google Scholar] [CrossRef]
- Sekar, S.; Lee, Y.; Kim, D.Y.; Lee, S. Substantial LIB anode performance of graphitic carbon nanoflakes derived from biomass green-tea waste. Nanomaterials 2019, 9, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Ye, D.; Liu, P.; Tang, Y.; Guo, J.; Wang, L.; Wang, H. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2017, 8, 1702383. [Google Scholar] [CrossRef]
- Ji, X.; Yang, Y.; Ding, Y.; Lu, Z.; Liu, G.; Liu, Y.; Song, J.; Yang, Z.; Liu, X. Fluorine-doped carbon-coated mesoporous Ti2Nb10O29 microspheres as a high-performance anode for lithium-ion batteries. J. Phys. Chem. C 2022, 126, 7799–7808. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, B.; Seo, D.H.; Han, Z.J.; Wong, J.I.; Ostrikov, K.; Zhang, H.; Yang, H.Y. MoS2-coated vertical graphene nanosheets for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 2016, 8, e268. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, H.; Jiang, S.; Han, G.; Gao, J.; Yu, X.; Lian, H.; Tu, W.; Han, Y.F.; Ma, R. The facile synthesis of superstructured MoS2 and graphitic nanocarbon hybrid for efficient hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 14441–14449. [Google Scholar] [CrossRef]
- Wei, C.; Chen, S.; Yu, C.; Wang, R.; Luo, Q.; Chen, S.; Wu, Z.; Liu, C.; Cheng, S.; Xie, J. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries. Appl. Mater. Today 2023, 31, 101770. [Google Scholar] [CrossRef]
- Ma, H.; Ben, S.; Shen, Z.; Zhang, X.; Wu, C.; Liao, S.; An, F. Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study. Appl. Surf. Sci. 2020, 512, 145588. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Mendoza-Sanchez, B.; Fernandez, V.; Veenstra, R.; Dukstiene, N.; Roberts, A.; Fairley, N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151–161. [Google Scholar] [CrossRef]
- Fan, X.B.; Xu, P.T.; Zhou, D.K.; Sun, Y.F.; Li, Y.C.; Nguyen, M.A.T.; Terrones, M.; Mallouk, T.E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956–5960. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Tiwari, A.P.; Lee, J.T.; Kim, D.Y.; Park, J.H.; Lee, H. Cylindrical nanostructured MoS2 directly grown on CNT composites for lithium-ion batteries. Nanoscale 2015, 7, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Chen, T.; Cai, M.; Wu, F.; You, Z.; Li, J. Fabrication of large-surface-area graphitized carbons by potassium hydroxide-promoted catalytic graphitization. Mater. Res. Bull. 2021, 140, 111333. [Google Scholar] [CrossRef]
- Vieira, L.; Neto, J.R.M.; Ferreira, O.P.; Torresi, R.M.; Torresi, S.I.C.; Alves, O.L. Template conversion of MoO3 to MoS2 nanoribbons: Synthesis and electrochemical properties. RSC Adv. 2018, 8, 30346–30353. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.Y.; Jiang, H.; Hu, Y.J.; Zhang, L.; Li, C.Z. Self-assembling few-layer MoS2 nanosheets on a CNT backbone for high-rate and long-life lithium-ion batteries. RSC Adv. 2014, 4, 40368–40372. [Google Scholar] [CrossRef]
- Choi, W.; Choi, Y.S.; Kim, H.; Yoon, J.; Kwon, Y.; Kim, T.; Ryu, J.H.; Lee, J.H.; Lee, W.; Huh, J.; et al. Evidence for the coexistence of polysulfide and conversion reactions in the lithium storage mechanism of MoS2 anode material. Chem. Mater. 2021, 33, 1935–1945. [Google Scholar] [CrossRef]
- Wang, J.; Luo, C.; Gao, T.; Langrock, A.; Wang, C. An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 2015, 11, 473–481. [Google Scholar] [CrossRef]
- Jain, R.; Lakhnot, A.S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R.A.; Kamble, M.; Han, F.; Wang, C.; Koratkar, N. Nanostructuring versus microstructuring in batteryelectrodes. Nat. Rev. Mater. 2022, 7, 736–746. [Google Scholar] [CrossRef]
- Liu, G.; Cui, J.; Luo, R.; Liu, Y.; Huang, X.; Wu, N.; Jin, X.; Chen, H.; Tang, S.; Kim, J.K.; et al. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl. Surf. Sci. 2019, 469, 854–863. [Google Scholar] [CrossRef]
- Yu, X.Y.; Hu, H.; Wang, Y.W.; Chen, H.Y.; Lou, X.W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Ed. 2015, 54, 7395–7398. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.Y.; Wang, R.; Huang, H.Y.; Xie, C.; Li, Z.H.; Li, J.; Niu, C.M. In situ synthesis of carbon nanotube hybrids with alternate MoC and MoS2 to enhance the electrochemical activities of MoS2. Nano Lett. 2015, 15, 5268–5272. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yu, K.; Song, H.; Li, H.; Tan, Y.; Fu, H.; Li, C.; Lei, X.; Zhu, Z. Preparation of hollow microsphere@onion-like solid nanosphere MoS2 coated by a carbon shell as a stable anode for optimized lithium storage. Nanoscale 2016, 8, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhu, H.; Sun, Y.; Tang, L.; Zhang, X. Boosting the lithium storage performance of MoS2 with graphene quantum dots. J. Mater. Chem. A 2016, 4, 4783–4789. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Kong, J.; Ang, J.M.; Lee, P.S.; Liu, Z.; Lu, X. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: A novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2372–2379. [Google Scholar] [CrossRef]
- Chen, B.; Meng, Y.H.; He, F.; Liu, E.Z.; Shi, C.S.; He, C.N.; Ma, L.Y.; Li, Q.Y.; Li, J.J.; Zhao, N.Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154–163. [Google Scholar] [CrossRef]
- Jiang, Y.; Hall, C.; Burr, P.A.; Song, N.; Lau, D.; Yuwono, J.; Wang, D.W.; Ouyang, Z.; Lennon, A. Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. J. Power Sources 2020, 463, 228205. [Google Scholar] [CrossRef]
- Liu, R.; Shen, C.; Dong, Y.; Qin, J.; Wang, Q.; Iocozzia, J.; Zhao, S.; Yuan, K.; Han, C.; Li, B.; et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14797–14804. [Google Scholar] [CrossRef]
- Wei, C.; Yu, C.; Wang, R.; Peng, L.; Chen, S.; Miao, X.; Cheng, S.; Xie, J. Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J. Power Sources 2023, 559, 232659. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Luo, W.; Luo, H.; Liu, X.; Zheng, W. A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions. Nanomaterials 2023, 13, 2088. https://doi.org/10.3390/nano13142088
Zhao Y, Luo W, Luo H, Liu X, Zheng W. A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions. Nanomaterials. 2023; 13(14):2088. https://doi.org/10.3390/nano13142088
Chicago/Turabian StyleZhao, Yiyang, Wenhao Luo, Huiqing Luo, Xiaodi Liu, and Wenjun Zheng. 2023. "A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions" Nanomaterials 13, no. 14: 2088. https://doi.org/10.3390/nano13142088
APA StyleZhao, Y., Luo, W., Luo, H., Liu, X., & Zheng, W. (2023). A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions. Nanomaterials, 13(14), 2088. https://doi.org/10.3390/nano13142088