The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Hollow CuS Microspheres
2.2. Materials Characterization
2.3. Electrochemical Measurement
2.4. Photocatalytic Test
3. Results
3.1. Structure Characterization
3.2. Formation Mechanism
3.3. Li-Ion Storage Properties
3.4. Photocatalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, C.; Chen, S.; Yu, C.; Wang, R.; Luo, Q.; Chen, S.; Wu, Z.; Liu, C.; Cheng, S.; Xia, J. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries. Appl. Mater. Today 2023, 31, 101770. [Google Scholar] [CrossRef]
- Orimolade, B.O.; Idris, A.O.; Feleni, U.; Mamba, B. Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis-a comprehensive review. Environ. Pollut. 2021, 289, 117891. [Google Scholar] [CrossRef]
- Golmohammadzadeh, R.; Faraji, F.; Jong, B.; Pozo-Gonzalo, C.; Banerjee, P.C. Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2022, 159, 112202. [Google Scholar] [CrossRef]
- Lee, W.W.; Lee, J.M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2014, 2, 1589–1626. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, L.; Sun, C.; Gu, Y.; Wen, W.; Fang, X. Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance. CrystEngComm 2018, 20, 6529–6537. [Google Scholar] [CrossRef]
- Bell, J.D.; Murphy, J.A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem. Soc. Rev. 2021, 50, 9540–9685. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Su, D.; Ma, W.; Zhao, Y.; Yan, D.; Li, J.; Jin, H. Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability. Appl. Surf. Sci. 2017, 403, 1–8. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H.E.; Hng, H.H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987–993. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Y.; Li, X.; Xiao, B.Y.; Wu, L.; Song, J.P.; Xiao, Y.X.; Wu, S.M.; Wang, Y.; Chang, G.G.; et al. Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage. Chem. Eur. J. 2018, 24, 13246–13252. [Google Scholar] [CrossRef]
- Du, L.; Long, Z.; Wen, H.; Ge, W.; Zhou, Y.; Wang, J. (ionic liquid)-derived morphology control of Nb2O5 materials and their photocatalytic properties. CrystEngComm 2014, 16, 9096–9103. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Liu, Y.; Sun, R.; Ma, J.; Guo, J.; Hu, M. Urchin-like hierarchical H-Nb2O5 microspheres: Synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Trans. 2017, 46, 10935–10940. [Google Scholar] [CrossRef]
- An, C.; Ni, Y.; Wang, Z.; Li, X.; Liu, X. Facile fabrication of CuS micro-flower as high durable sodium-ion battery anode. Inorg. Chem. Front. 2018, 5, 1045–1052. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, M.; Wang, G.; Lu, L.; Wang, Z.; Xu, H.; Liu, S.; Min, Q. 3D hierarchical porous CuS flower-dispersed CNT arrays on nickel foam as a binder-free electrode for supercapacitors. New J. Chem. 2019, 43, 10906–10914. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Li, Q. Facile synthesis of CuS Nanostructured flowers and their visible light photocatalytic properties. Appl. Phys. A 2017, 123, 196. [Google Scholar] [CrossRef]
- Nabi, G.; Tanveer, M.; Tahir, M.B.; Kiran, M.; Nawaz, T. Mixed solvent based surface modification of CuS nanostructures for an excellent photocatalytic application. Inorg. Chem. Commun. 2020, 121, 108205. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Anwer, S.; Shoaib, M.; Liu, G.; Li, H.; Raheel, M.; Javed, M.; Khalid, B. Designing novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light. CrystEngComm 2020, 22, 4162–4173. [Google Scholar] [CrossRef]
- Liu, X.; Guo, M.; Wei, C.; Ji, X.; Zheng, W. Purposely synthesis of hierarchical CuS nanoflowers composed of ultrathin nanoflakes with exposed (001) facets using a solvent-template ionic liquid and their application in supercapacitors. Mater. Sci. Eng. B 2021, 273, 115433. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Wang, L.; Li, Y.; Ma, Y.; Ma, J. Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties. J. Power Sources 2016, 312, 199–206. [Google Scholar] [CrossRef]
- Liu, G.; Liu, X.; Wang, L.; Ma, J.; Xie, H.; Ji, X.; Guo, J.; Zhang, R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim. Acta 2016, 222, 1103–1111. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Liu, R.; Liu, G.; Ji, X.; Feng, Y.; Ma, J. Ionic liquid-assisted synthesis of hierarchical Ti2Nb10O29 porous microspheres coated by ultrathin N-doped carbon layers for high-performance lithium-ion battery. Ceram. Int. 2021, 47, 17606–17641. [Google Scholar] [CrossRef]
- Liu, X.; Fan, H.; Li, B.; Hu, M.; Hu, Y.; Liu, M.; Liu, G.; Ma, J. α-Fe2O3 hollow microspheres assembled by ultra-thin nanoflakes exposed with (241) high-index facet: Solvothermal synthesis, lithium storage performance, and superparamagnetic property. Int. J. Hydrogen Energy 2019, 44, 1070–1077. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, Z.; Liu, F.; Chen, Y.; Liu, G.; Chen, Y.; Wang, X.; Zhang, B.; Liu, G. Hollow porous BiOCl microspheres assembled with single layer of nanocrystals: Spray solution combustion synthesis and the enhanced photocatalytic properties. Nanotechnology 2021, 32, 205602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Zhang, X.; Wen, Y.; Guo, J. Sacrificial template formation of CoMoO4 hollow nanostructures constructed by ultrathin nanosheets for robust lithium storage. RSC Adv. 2016, 6, 51710–51715. [Google Scholar] [CrossRef]
- Zhang, L.; Jiu, H.; Fu, Y.; Sun, Y.; Chen, P.; Li, Y.; Ma, S. Facile synthesis and luminescence of GdPO4:Eu hollow microspheres by a sacrificial template route. Mater. Lett. 2013, 101, 47–50. [Google Scholar] [CrossRef]
- Dai, C.; Tian, X.; Nie, Y.; Tian, C.; Yang, C.; Zhou, Z.; Li, Y.; Gao, X. Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction. Chem. Eng. J. 2017, 321, 105–112. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.J. Iron oxide hollow spheres: Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Acta Mater. 2009, 57, 2154–2165. [Google Scholar] [CrossRef]
- Du, W.; Qian, X.; Ma, X.; Gong, Q.; Cao, H.; Yin, H. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem. Eur. J. 2007, 13, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Tang, Y.; Li, B.; Zhou, L.; Gong, F.; He, H.; Sun, B.; Tang, C.; Gao, F.; Dong, L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for CO oxidation. Appl. Catal. B 2016, 180, 451–462. [Google Scholar] [CrossRef]
- Liang, H.; Shuang, W.; Zhang, Y.; Chao, S.; Han, H.; Wang, X.; Zhang, H.; Yang, L. Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties. ChemElectroChem 2018, 5, 494–500. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Chen, Y.C.; Lin, Y.G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Peng, P.; Zheng, W. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor. Nanoscale 2011, 3, 5090–5095. [Google Scholar] [CrossRef]
- Shakya, S.; Prakash, G.V. Formation of PbO hexagonal nanosheets and their conversion into luminescent inorganic-organic perovskite nanosheets: Growth and mechanism. RSC Adv. 2015, 5, 27946–27952. [Google Scholar] [CrossRef]
- Wen, L.L.; Hong, Y.Z.; Jing, L.; Qiang, W.; Yuan, F.L.; Cheng, Z.H. H2S bubbles-assisted synthesis of hollow Cu2−xSeyS1−y/reduced graphene oxide nanocomposites with tunable compositions and localized surface plasmon resonance. RSC Adv. 2015, 5, 91206–91212. [Google Scholar]
- Zhan, Q.; Shi, X.; Fan, D.; Zhou, L.; Wei, S. Solvent mixing generating air bubbles as a template for polydopamine nanobowl fabrication: Underlying mechanism, nanomotor assembly and application in cancer treatment. Chem. Eng. J. 2021, 404, 126443. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Wang, Z.; Zhao, J.; Dong, G. Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J. 2017, 4, 487–496. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, Y.; Li, M.; Qin, C.; Bakenov, Z. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries. Metals 2018, 8, 252. [Google Scholar] [CrossRef]
- Ren, C.; Yue, H.; Wang, G.; Wen, Q.; Jin, R. Copper sulfides nanocrystals encapsulated in polypyrrole nanotubes for stable lithium storage. Mater. Lett. 2021, 282, 128840. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, X.W.; Wang, J.Z.; Chou, S.L.; Konstantinov, K.; Liu, H.K. CuS nanoflakes, microspheres, microflowers, and nanowires: Synthesis and lithium storage properties. J. Nanosci. Nanotechnol. 2013, 13, 1309–1316. [Google Scholar] [CrossRef]
- Hosseinpour, Z.; Scarpellini, A.; Najafishirtari, S.; Marras, S.; Colombo, M.; Alemi, A.; Volder, M.D.; George, C.; Lesnyak, V. Morphology-dependent electrochemical properties of CuS hierarchical superstructures. ChemPhysChem 2015, 16, 3418–3424. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiao, L.; Yuan, H.; Liu, S. Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries. Powder Technol. 2011, 212, 64–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Wang, Y.; Zeng, J.; Ji, P.; Zhao, J. Copper sulfide microspheres wrapped with reduced graphene oxide for high-capacity lithium-ion storage. Mater. Sci. Eng. B 2016, 213, 57–62. [Google Scholar] [CrossRef]
- Fu, Y.; Manthiram, A. Electrochemical properties of Cu2S with ether-based electrolyte in Li-ion batteries. Electrochim. Acta 2013, 109, 716–719. [Google Scholar] [CrossRef]
- Han, F.; Li, W.C.; Li, D.; Lu, A.H. In situ electrochemical generation of mesostructured Cu2S/C composite for enhanced lithium storage: Mechanism and material properties. ChemElectroChem 2014, 1, 733–740. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, X.; Yang, P. Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int. J. Hydrogen Energy 2018, 43, 2237–2246. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Fang, Q.; Zuo, J.; Liu, M.; Zhang, J. An integrated electrode based on nanoflakes of MoS2 on carbon cloth for enhanced lithium storage. RSC Adv. 2020, 10, 9335–9340. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Huang, J.; Zhang, Y.; Zhao, J. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. Electrochim. Acta 2017, 225, 443–451. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, J.; Fang, N.; Liang, J.; Shen, T.; Yuan, S. Investigation of photocatalytic performance of CuS/Bi2WO6 and degradation pathway of RhB in water. J. Water Supply Res. T. 2020, 69, 145–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Ge, Z.; Zhu, L.; Li, Y. Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders. Eur. J. Inorg. Chem. 2014, 14, 2368–2375. [Google Scholar] [CrossRef]
- Deng, X.; Wang, C.; Yang, H.; Shao, M.; Zhang, S.; Wang, X.; Ding, M.; Huang, J.; Xu, X. One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties. Sci. Rep. 2018, 7, 3877. [Google Scholar] [CrossRef]
- Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O.A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 25, 203–206. [Google Scholar] [CrossRef]
- Chen, P.; Su, Y.; Liu, H.; Wang, Y. Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 2013, 5, 12073–12082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jin, L.; Yang, Y.; Guo, K.; Hu, F. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity. J. Photochem. Photobiol. A 2019, 380, 11859. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, X.; Wang, P.; Fan, J.; Yu, H. Homojunction CdS photocatalysts with a massive S2-adsorbed surface phase: One-step facile synthesis and high H2-evolution performance. ACS Sustain. Chem. Eng. 2020, 8, 543–551. [Google Scholar] [CrossRef]
- Yepsen, O.; Yáñez, J.; Mansilla, H.D. Photocorrosion of copper sulfides: Toward a solar mining industry. Sol. Energy 2018, 171, 106–111. [Google Scholar] [CrossRef]
- Hou, L.; Niu, Y.; Yang, F.; Ge, F.; Yuan, C. Facile solvothermal synthesis of hollow biobr submicrospheres with enhanced visible-light-responsive photocatalytic performance. J. Anal. Methods Chem. 2020, 2020, 3058621. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, C.; Zhou, T.; Hu, J. Morphology-preserved transformation of CdS hollow structures toward photocatalytic H2 evolution. CrystEngComm 2020, 22, 1057–1062. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Vu, N.N.; Do, T.O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. J. Mater. Chem. A 2015, 3, 18345–18359. [Google Scholar] [CrossRef]
- Li, C.X.; Han, L.J.; Liu, R.J.; Li, H.H.; Zhang, S.J.; Zhang, G.J. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: Enhanced photocatalytic activity toward hydrogen evolution. J. Mater. Chem. 2012, 22, 23815–23820. [Google Scholar] [CrossRef]
- Hao, X.; Hu, Y.; Cui, Z.; Zhou, J.; Wang, Y.; Zou, Z. Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting. Appl. Catal. B-Environ. 2019, 244, 694–703. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Exposed facet and crystal phase tuning of hierarchical tungsten oxide nanostructures and their enhanced visible-light-driven photocatalytic performance. CrystEngComm 2015, 17, 9102–9911. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shao, Y.; Chen, H.; Luo, X.; Liu, X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials 2023, 13, 1505. https://doi.org/10.3390/nano13091505
Zhao Y, Shao Y, Chen H, Luo X, Liu X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials. 2023; 13(9):1505. https://doi.org/10.3390/nano13091505
Chicago/Turabian StyleZhao, Yiyang, Yonghui Shao, Hao Chen, Xinwen Luo, and Xiaodi Liu. 2023. "The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications" Nanomaterials 13, no. 9: 1505. https://doi.org/10.3390/nano13091505
APA StyleZhao, Y., Shao, Y., Chen, H., Luo, X., & Liu, X. (2023). The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials, 13(9), 1505. https://doi.org/10.3390/nano13091505