Potential of Carbon Nanotube Chemiresistor Array in Detecting Gas-Phase Mixtures of Toxic Chemical Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Experimental Setup
3. Results and Discussion
3.1. Gas Sensing Performance
3.2. Adsorption Parameters of SWCNT Sensor
3.3. Sensor Response to Mixtures of Gas Molecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korolkoff, N.O. Survey of toxic gas sensors and monitoring systems. Solid State Technol. 1989, 32, 49–63. [Google Scholar]
- Watt, M.M.; Watt, S.J.; Seaton, A. Episode of toxic gas exposure in sewer workers. Occup. Environ. Med. 1997, 54, 277. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.M.; Lee, S.; Min, H.; Park, S.; Yoon, S.; Choi, J.H.; Yoon, S.M.; Jung, B.; Im, T.; Jeong, C.-S.; et al. Design and Integration of a Gas Sensor Module that Indicates the End of Service Life of a Gas Mask Canister. Adv. Mater. Technol. 2022, 7, 2100711. [Google Scholar] [CrossRef]
- Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M.E.; Zhao, B.; Sunshine, S.; Haddon, R.C. Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors. J. Phys. Chem. B 2004, 108, 19717–19720. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Lee, S.; Park, S.; Lee, C.Y. Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate. RSC Adv. 2019, 9, 33976–33980. [Google Scholar] [CrossRef] [PubMed]
- Freddi, S.; Gonzalez, M.C.R.; Carro, P.; Sangaletti, L.; De Feyter, S. Chemical Defect-Driven Response on Graphene-Based Chemiresistors for Sub-ppm Ammonia Detection. Angew. Chem. Int. Ed. 2022, 61, e202200115. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Zhang, Y.; Geng, J.; Hu, J.; Tan, W. Green recycling of spent electrode of binder-free Cu supported Ag nanowires in gas sensor field: Attempt of turning waste into treasure for the rechargeable battery. Appl. Surf. Sci. 2022, 581, 152326. [Google Scholar] [CrossRef]
- Jung, S.; Baik, K.H.; Jang, S. GaN Based Carbon Dioxide Sensor. ECS Trans. 2017, 77, 121–125. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, Y.; Bae, J.; Kim, J.; Baik, K.H.; Jang, S. (100) Plane β-Ga2O3 Flake Based Field Effect Transistor and Its Hydrogen Response. ECS J. Solid State Sci. Technol. 2021, 10, 125004. [Google Scholar] [CrossRef]
- Baik, K.H.; Jang, S. AlGaN/GaN Heterostructure Based Hydrogen Sensor with Temperature Compensation. ECS J. Solid State Sci. Technol. 2020, 9, 045010. [Google Scholar] [CrossRef]
- Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328. [Google Scholar] [CrossRef]
- Lee, C.Y.; Strano, M.S. Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors. Langmuir 2005, 21, 5192–5196. [Google Scholar] [CrossRef]
- Sumanasekera, G.U.; Adu, C.K.W.; Fang, S.; Eklund, P.C. Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 1096–1099. [Google Scholar] [CrossRef] [Green Version]
- Freddi, S.; Sangaletti, L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. Nanomaterials 2022, 12, 2992. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hou, M.; Yang, L.; Gao, J.; Zhang, G.; Guo, R.; Guo, S. Combinatorial Material Strategy: Parallel Synthesis and High-Throughput Screening of WO3 Nanoplates Decorated with Noble Metals for VOCs Sensor. Chemosensors 2023, 11, 239. [Google Scholar] [CrossRef]
- Freddi, S.; Vergari, M.; Pagliara, S.; Sangaletti, L. A Chemiresistor Sensor Array Based on Graphene Nanostructures: From the Detection of Ammonia and Possible Interfering VOCs to Chemometric Analysis. Sensors 2023, 23, 882. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef] [PubMed]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Raya, I.; Kzar, H.H.; Mahmoud, Z.H.; Al Ayub Ahmed, A.; Ibatova, A.Z.; Kianfar, E. A review of gas sensors based on carbon nanomaterial. Carbon Lett. 2022, 32, 339–364. [Google Scholar] [CrossRef]
- Palacín, J.; Martínez, D.; Clotet, E.; Pallejà, T.; Burgués, J.; Fonollosa, J.; Pardo, A.; Marco, S. Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection. Sensors 2019, 19, 1957. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, G.; Zhang, Q.; Qu, M.; Fu, Y.Q.; Liu, Q.; Xie, J. Virtual sensor array based on MXene for selective detections of VOCs. Sens. Actuators B Chem. 2021, 331, 129414. [Google Scholar] [CrossRef]
- Song, L.; Yang, L.; Wang, Z.; Liu, D.; Luo, L.; Zhu, X.; Xi, Y.; Yang, Z.; Han, N.; Wang, F.; et al. One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuators B Chem. 2019, 283, 793–801. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S.C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Guerin, H.; Le Poche, H.; Pohle, R.; Buitrago, E.; Fernández-Bolaños Badía, M.; Dijon, J.; Ionescu, A.M. Carbon nanotube gas sensor array for multiplex analyte discrimination. Sens. Actuators B Chem. 2015, 207, 833–842. [Google Scholar] [CrossRef]
- Yi, S.; Tian, S.; Zeng, D.; Xu, K.; Peng, X.; Wang, H.; Zhang, S.; Xie, C. A novel approach to fabricate metal oxide nanowire-like networks based coplanar gas sensors array for enhanced selectivity. Sens. Actuators B Chem. 2014, 204, 351–359. [Google Scholar] [CrossRef]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuators B Chem. 2021, 329, 129090. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Thomson, B.; Debnath, R.; Motayed, A.; Rao, M.V. Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms. IEEE Sens. J. 2020, 20, 6020–6028. [Google Scholar] [CrossRef]
- Laref, R.; Losson, E.; Sava, A.; Siadat, M. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemom. Intell. Lab. Syst. 2019, 184, 22–27. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Jin, L.; Zhang, H.; Li, Y.; Zhou, Q.; Zen, W. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers. Sens. Actuators B Chem. 2020, 312, 127998. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Srivastava, A.K. Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sens. Actuators B Chem. 2003, 96, 24–37. [Google Scholar] [CrossRef]
- Yong, Y.; Gao, R.; Wang, X.; Yuan, X.; Hu, S.; Zhao, Z.; Li, X.; Kuang, Y. Highly sensitive and selective room-temperature gas sensors based on B6N6H6 monolayer for sensing SO2 and NH3: A first-principles study. Results Phys. 2022, 33, 105208. [Google Scholar] [CrossRef]
- Liu, J.; Cui, N.; Xu, Q.; Wang, Z.; Gu, L.; Dou, W. High-Performance PANI-Based Ammonia Gas Sensor Promoted by Surface Nanostructuralization. ECS J. Solid State Sci. Technol. 2021, 10, 027007. [Google Scholar] [CrossRef]
- Taha, R.A.; Shalabi, A.S.; Assem, M.M.; Soliman, K.A. DFT study of adsorbing SO2, NO2, and NH3 gases based on pristine and carbon-doped Al24N24 nanocages. J. Mol. Model. 2023, 29, 140. [Google Scholar] [CrossRef]
- Dinh, L.T.T.; Rogers, W.J.; Sam Mannan, M. Reactivity of ethylene oxide in contact with basic contaminants. Thermochim. Acta 2008, 480, 53–60. [Google Scholar] [CrossRef]
- Palassis, J. Preventing Worker Injuries and Deaths from Explosions in Industrial Ethylene Oxide Sterilization Facilities; National Institute for Occupational Safety and Health (NIOSH), the U.S. Environmental Protection Agency (EPA), and the Ethylene Oxide Sterilization Association (EOSA): Washington, DC, USA, 2007. [Google Scholar]
- Bretherick, L. Bretherick’s Handbook of Reactive Chemical Hazards; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Salem, D.P.; Gong, X.; Liu, A.T.; Koman, V.B.; Dong, J.; Strano, M.S. Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2017, 139, 16791–16802. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, Conductive Carbon Nanotube Films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef]
- Fennell, J.F., Jr.; Liu, S.F.; Azzarelli, J.M.; Weis, J.G.; Rochat, S.; Mirica, K.A.; Ravnsbæk, J.B.; Swager, T.M. Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. Angew. Chem. Int. Ed. 2016, 55, 1266–1281. [Google Scholar] [CrossRef] [Green Version]
- Toxic Industrial Chemicals. J. R. Army Med. Corps 2002, 148, 371. [CrossRef] [Green Version]
- Kim, S.; Kwak, D.H.; Choi, I.; Hwang, J.; Kwon, B.; Lee, E.; Ye, J.; Lim, H.; Cho, K.; Chung, H.-J.; et al. Enhanced Gas Sensing Properties of Graphene Transistor by Reduced Doping with Hydrophobic Polymer Brush as a Surface Modification Layer. ACS Appl. Mater. Interfaces 2020, 12, 55493–55500. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhou, T.; Xia, H.; Zhang, T. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety. Nanomaterials 2023, 13, 1158. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Baik, K.H.; Ren, F.; Pearton, S.J.; Jang, S. AlGaN/GaN Heterostructure Based Schottky Diode Sensors with ZnO Nanorods for Environmental Ammonia Monitoring Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3020. [Google Scholar] [CrossRef]
- Kwon, B.; Bae, H.; Lee, H.; Kim, S.; Hwang, J.; Lim, H.; Lee, J.H.; Cho, K.; Ye, J.; Lee, S.; et al. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano 2022, 16, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.B. Patty’s Industrial Hygiene and Toxicology. Volume 3, Part B Lewis J. Cralley, Lester V. Cralley, and James S. Bus (Dow Chemical Company). John Wiley: New York. 1995. x + 765 pp. $195.00. ISBN 0-471-53065-4. J. Am. Chem. Soc. 1996, 118, 1580. [Google Scholar] [CrossRef]
- Inyawilert, K.; Sukee, A.; Siriwalai, M.; Wisitsoraat, A.; Sukunta, J.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Effect of Er doping on flame-made SnO2 nanoparticles to ethylene oxide sensing. Sens. Actuators B Chem. 2021, 328, 129022. [Google Scholar] [CrossRef]
- Abbas, S.; Yi, W.; Yoo, S.; Khalid, A.; Bhalli, Z.; Si, J.; Hou, X. Highly Efficient Response of Ammonia Gas Sensor Based on Surfactant-Free Sorted-Semiconducting Single-Walled Carbon Nanotubes at Room Temperature. Phys. Status Solidi 2022, 219, 2100529. [Google Scholar] [CrossRef]
- Ansari, N.; Lone, M.Y.; Ali, J.; Husain, M.; Husain, S. Enhancement of gas sensor response characteristics of functionalized SWCNTs. AIP Conf. Proc. 2020, 2276, 020033. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Ding, X.; Yu, X.; Yu, X. Enhanced ammonia sensitive properties and mechanism research of PANI modified with hydroxylated single-walled nanotubes. Mater. Chem. Phys. 2019, 226, 378–386. [Google Scholar] [CrossRef]
- Santra, S.; Sinha, A.K.; Ray, S.K. A Flexible Room Temperature Ammonia Sensor Based on Large Area, Transparent Single Wall Carbon Nanotube Thin Film. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Chaudhary, V.; Channegowda, M.; Ansari, S.A.; Rajan, H.K.; Kaushik, A.; Khanna, V.; Zhao, Z.; Furukawa, H.; Khosla, A. Low-trace monitoring of airborne sulphur dioxide employing SnO2-CNT hybrids-based energy-efficient chemiresistor. J. Mater. Res. Technol. 2022, 20, 2468–2478. [Google Scholar] [CrossRef]
- Jha, R.K.; Nanda, A.; Bhat, N. Sub-ppm sulfur dioxide detection using MoS2 modified multi-wall carbon nanotubes at room temperature. Nano Sel. 2022, 3, 98–107. [Google Scholar] [CrossRef]
- Ingle, N.; Sayyad, P.; Deshmukh, M.; Bodkhe, G.; Mahadik, M.; Al-Gahouari, T.; Shirsat, S.; Shirsat, M.D. A chemiresistive gas sensor for sensitive detection of SO2 employing Ni-MOF modified –OH-SWNTs and –OH-MWNTs. Appl. Phys. A 2021, 127, 157. [Google Scholar] [CrossRef]
- Singkammo, S.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S.; Yodsri, V.; Liewhiran, C. Catalytic roles of Sm2O3 dopants on ethylene oxide sensing mechanisms of flame-made SnO2 nanoparticles. Appl. Surf. Sci. 2018, 454, 30–45. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption Of Gases On Plane Surfaces Of Glass, Mica And Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
Gas | Materials | Concentration | Response | Year | Ref. |
---|---|---|---|---|---|
NH3 | CNT coated with EMIM | 0.2 ppm | 2.18% | 2023 | This work |
sc-SWCNTs, m-SWCNTs | 5 ppm | 18% | 2022 | [49] | |
p-SWCNTs, f-SWCNTs | 8 ppm | 5.8% | 2020 | [50] | |
SWCNTs -OH/PANI | 100 ppm | 14.91% | 2019 | [51] | |
COOH-functionalized SWCNTs | 300 ppm | 30% | 2018 | [52] | |
SO2 | CNT coated with PBS | 3.8 ppm | 0.11% | 2023 | This work |
SnO2/CNT | 1 ppm | 2.3% | 2022 | [53] | |
MWCNT/MoS2 | 0.5 ppm | 0.22% | 2021 | [54] | |
Ni-MOF/ –OH-SWNTs | 0.5 ppm | ~1.8% | 2021 | [55] | |
EtO | CNT coated with Ppy | 33 ppm | 0.37% | 2023 | This work |
0.5 wt% Sm2O3-doped SnO2 nanoparticles | 30 ppm | 61.9 at 350 °C | 2018 | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Park, S.; Lim, S.; Lee, C.; Lee, C.Y. Potential of Carbon Nanotube Chemiresistor Array in Detecting Gas-Phase Mixtures of Toxic Chemical Compounds. Nanomaterials 2023, 13, 2199. https://doi.org/10.3390/nano13152199
Lee S, Park S, Lim S, Lee C, Lee CY. Potential of Carbon Nanotube Chemiresistor Array in Detecting Gas-Phase Mixtures of Toxic Chemical Compounds. Nanomaterials. 2023; 13(15):2199. https://doi.org/10.3390/nano13152199
Chicago/Turabian StyleLee, Seongwoo, Sanghwan Park, Seongyeop Lim, Cheongha Lee, and Chang Young Lee. 2023. "Potential of Carbon Nanotube Chemiresistor Array in Detecting Gas-Phase Mixtures of Toxic Chemical Compounds" Nanomaterials 13, no. 15: 2199. https://doi.org/10.3390/nano13152199
APA StyleLee, S., Park, S., Lim, S., Lee, C., & Lee, C. Y. (2023). Potential of Carbon Nanotube Chemiresistor Array in Detecting Gas-Phase Mixtures of Toxic Chemical Compounds. Nanomaterials, 13(15), 2199. https://doi.org/10.3390/nano13152199