Effect of Sonication and Ceria Doping on Nanoparticles Fabricated by Laser Marker Ablation of Ti in Water
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyunwoong, P.; Yiseul, P.; Wooyul, K.; Wonyong, C. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 1–20. [Google Scholar] [CrossRef]
- Rimeh, D.; Patrick, D.; Didier, R. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Zuñiga-Ibarra, V.A.; Shaji, S.; Krishnan, B.; Johny, J.; Kanakkillam, S.S.; Avellaneda, D.A.; Martinez, J.A.; Das Roy, T.K.; Ramos-Delgado, N.A. Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Appl. Surf. Sci. 2019, 483, 156–164. [Google Scholar] [CrossRef]
- Song, H.; Li, C.; Lou, Z.; Ye, Z.; Zhu, L. Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain. Chem. Eng. 2017, 5, 8982–8987. [Google Scholar] [CrossRef]
- Tian, M.; Mahjouri-Samani, M.; Eres, G.; Sachan, R.; Yoon, M.; Chisholm, M.F.; Wang, K.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B.; et al. Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano 2015, 9, 10482–10488. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cai, W.; Fang, M.; Li, Z.; Zeng, H.; Hu, J.; Luo, X.; Jing, W. Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology 2009, 20, 285707. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, U.S.; Citak, A. Synthesis of titanium dioxide nanoparticles with renewable Synthesis of titanium dioxide nanoparticles with renewable resources and their applications: Review. Turk. J. Chem. 2022, 46, 1345–1357. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Y.; Liu, J.; Cao, H.; Li, Y.; Ren, X.; Ye, S.; Liu, J.; Zhang, Q. Recent Developments of Ti-based Nanocatalysts for Electrochemical Nitrate-to-Ammonia Conversion. Inorg. Chem. Front. 2023. [Google Scholar] [CrossRef]
- Solati, E.; Aghazadeh, Z.; Dorranian, D. Effects of Liquid Ablation Environment on the Characteristics of TiO2 Nanoparticles. J. Clust. Sci. 2019, 31, 961–969. [Google Scholar] [CrossRef]
- Subhan, A.; Mourad, A.; Al-Douri, Y. Influence of Laser Process Parameters, Liquid Medium, and External Field on the Synthesis of Colloidal Metal Nanoparticles Using Pulsed Laser Ablation in Liquid: A Review. Nanomaterials 2022, 12, 2144. [Google Scholar] [CrossRef]
- El-Khawaga, A.M.; Zidan, A.; El-Mageed, A.I.A.A. Preparation methods of different nanomaterials for various potential applications: A review. J. Mol. Struct. 2023, 1281, 135148. [Google Scholar] [CrossRef]
- Borodina, T.I.; Val’yano, G.E.; Malikov, M.M. Specificity of micro- and nanoproducts of titanium laser ablation in pure water. Quantum Electron. 2022, 52, 587–592. [Google Scholar] [CrossRef]
- Vincenzo, A.; David, A.; Yoshie, I.; Naoto, K.; Salvatore, A.; Giuseppe, C.; Sven, R.; Stephan, B. Room-Temperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chem.—Eur. J. 2020, 26, 9206–9242. [Google Scholar] [CrossRef]
- Streubel, R.; Bendt, G.; Gökce, B. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids. Nanotechnology 2016, 27, 205602. [Google Scholar] [CrossRef] [PubMed]
- Barcikowski, S.; Menéndez-Manjón, A.; Chichkov, B.; Brikas, M.; Račiukaitis, G. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl. Phys. Lett. 2007, 91, 083113. [Google Scholar] [CrossRef]
- Nikov, R.; Nedyalkov, N.; Karashanova, D. Laser ablation of Ni in the presence of external magnetic field: Selection of microsized particles. Appl. Surf. Sci. 2020, 518, 146211. [Google Scholar] [CrossRef]
- Simone, C.; Andrea, G.; Muñetón, D.A.; Daniel, S.; Vincenzo, A. A system for the synthesis of nanoparticles by laser ablation in liquid that is remotely controlled with PC or smartphone. Rev. Sci. Instrum. 2019, 90, 033902. [Google Scholar] [CrossRef]
- Nithin, J.; AnneMarie, K. In Situ Collection of Nanoparticles during Femtosecond Laser Machining in Air. Nanomaterials 2021, 11, 2264. [Google Scholar] [CrossRef]
- Romashevskiy, S.A.; Ashitkov, S.I.; Agranat, M.B. Femtosecond Laser Technology for Solid-State Material Processing: Creation of Functional Surfaces and Selective Modification of Nanoscale Layers. High Temp. 2018, 56, 587–604. [Google Scholar] [CrossRef]
- Blažeka, D.; Car, J.; Krstulović, N. Concentration Quantification of TiO2 Nanoparticles Synthesized by Laser Ablation of a Ti Target in Water. Materials 2022, 15, 3146. [Google Scholar] [CrossRef]
- Torres-Romero, A.; Cajero-Juarez, M.; Nunez-Anita, R.E.; Contreras-Garcia, M.E. Ceria-Doped Titania Nanoparticles as Drug Delivery System. J. Nanosci. Nanotechnol. 2020, 20, 3971. [Google Scholar] [CrossRef] [PubMed]
- Alberoni, C.; Barroso-Martin, I.; Infantes-Molina, A.; Rodriguez-Castellon, E.; Talon, A.; Zhao, H.G.; You, S.J.; Vomiero, A.; Moretti, E. Ceria doping boosts methylene blue photodegradation in titania nanostructures. Mater. Chem. Front. 2021, 5, 4138. [Google Scholar] [CrossRef]
- Song, L.Y.; Zhan, Z.C.; Sun, X.; Zhu, H.T.; Qiu, W.G.; He, H.; Li, J. Effect of SO2 treatment in the presence and absence of O2 over ceria-titania oxides for selective catalytic reduction. J. Mater. Sci. 2020, 55, 4570. [Google Scholar] [CrossRef]
- Mamedov, D.; Karazhanov, S.Z.; Alonso-Vante, N. Surface-Related Factors Affecting the Photocatalytic Process of Semiconductor Oxides: Ceria and Titania. J. Electrochem. Soc. 2023, 170, 056503. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Bakhtiarian, M.; Bahrami, K. Mesoporous titania-ceria mixed oxide (MTCMO): A highly efficient and reusable heterogeneous nanocatalyst for one-pot synthesis of beta-phosphonomalonates via a cascade Knoevenagel-phospha-Michael addition reaction. J. Exp. Nanosci. 2020, 15, 54. [Google Scholar] [CrossRef] [Green Version]
- Stefa, S.; Lykaki, M.; Fragkoulis, D.; Binas, V.; Pandis, P.; Stathopoulos, V.N.; Konsolakis, M. Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes 2020, 8, 847. [Google Scholar] [CrossRef]
- Solis, R.R.; Rodriguez-Padron, D.; Martin-Lara, M.A.; Calero, M.; Luque, R.; Munoz-Batista, M.J. Coffee-waste templated CeOx/TiO2 nanostructured materials for selective photocatalytic oxidations. Chemosphere 2023, 311, 136672. [Google Scholar] [CrossRef]
- Henych, J.; Stastny, M.; Nemeckova, Z.; Mazanec, K.; Tolasz, J.; Kormunda, M.; Ederer, J.; Janos, P. Bifunctional TiO2/CeO2 reactive adsorbent/photocatalyst for degradation of bis-p-nitrophenyl phosphate and CWAs. Chem. Eng. J. 2021, 414, 128822. [Google Scholar] [CrossRef]
- Nastulyavichus, A.; Smirnov, N.; Kudryashov, S. Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic? Chin. Phys. B 2022, 31, 077803. [Google Scholar] [CrossRef]
- Hatch, J.E. Aluminum: Properties and Physical Metallurgy; American Society for Metals, Aluminum Association: Materials Park, OH, USA, 1984; p. 242. ISBN 978-1-61503-169-6. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 0306472929. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qi, X.; Liu, C.; Chen, X.; Teng, C.; Luo, Y.; Wang, C.; Jiang, H.; Cui, H.; Dong, J. Effect of Sonication and Ceria Doping on Nanoparticles Fabricated by Laser Marker Ablation of Ti in Water. Nanomaterials 2023, 13, 2201. https://doi.org/10.3390/nano13152201
Zhang H, Qi X, Liu C, Chen X, Teng C, Luo Y, Wang C, Jiang H, Cui H, Dong J. Effect of Sonication and Ceria Doping on Nanoparticles Fabricated by Laser Marker Ablation of Ti in Water. Nanomaterials. 2023; 13(15):2201. https://doi.org/10.3390/nano13152201
Chicago/Turabian StyleZhang, Huixing, Xiaowen Qi, Chengling Liu, Xiaojie Chen, Chao Teng, Yang Luo, Chenrui Wang, Hui Jiang, Hongtao Cui, and Ji Dong. 2023. "Effect of Sonication and Ceria Doping on Nanoparticles Fabricated by Laser Marker Ablation of Ti in Water" Nanomaterials 13, no. 15: 2201. https://doi.org/10.3390/nano13152201
APA StyleZhang, H., Qi, X., Liu, C., Chen, X., Teng, C., Luo, Y., Wang, C., Jiang, H., Cui, H., & Dong, J. (2023). Effect of Sonication and Ceria Doping on Nanoparticles Fabricated by Laser Marker Ablation of Ti in Water. Nanomaterials, 13(15), 2201. https://doi.org/10.3390/nano13152201