The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. The Synthesis of the NaGdF4: Yb/Tm Core UCNPs
2.3. The Synthesis of the NaGdF4: Yb/Tm@NaGdF4: Yb Core–Shell UCNPs
2.4. The Preparation of the Cs-Oleate
2.5. The Synthesis of the UCNP-CsPbBr3 Nanocomposites
2.6. Characterization
3. Results and Discussion
3.1. Morphologies and Structures of the UCNPs and UCNP-CsPbBr3 Nanocomposites
3.2. Thermo-Enhanced Luminescence of the NaGdF4: Yb/Tm UCNPs
3.3. Energy Transfer Mechanism and Anti-Counterfeiting Applications of the UCQ Composite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, W.; Lin, G.G.; Clarke, C.; Zhou, J.J.; Jin, D.Y. Optical nanomaterials and enabling technologies for high-security-level anti-counterfeiting. Adv. Mater. 2020, 32, 1901430. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.S.; Sun, X.X.; Chu, S.C.; Abraham, A.; Yan, B. Digital watermarking with improved SMS applied for QR code. Eng. Appl. Artif. Intell. 2021, 97, 104049. [Google Scholar] [CrossRef]
- Yang, M.Z.; Liu, Y.; Jiang, X.Y. Barcoded point-of-care bioassays. Chem. Soc. Rev. 2019, 48, 850–884. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, M.S.; Zhu, X.L.; Iyore, O.E.; Mortensen, N.A.; Levy, U. Holographic resonant laser printing of metasurfaces using plasmonic template. ACS Photonics 2018, 5, 1665. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.X.; Gao, P.; Wang, J.G.; Qi, Y.S. Design, synthesis, and characterization of a novel blue-green long afterglow BaYAl3O7:Eu2+, Nd3+ phosphor and its anti-counterfeiting application. Nanomaterials 2023, 13, 2457. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.P.; Lin, T.R.; Lin, L.H.; Lin, S.; Fu, F.F. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Edit. 2016, 55, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, X.Y.; Li, Y.; Liu, H.L.; Long, B.B. Rapid and green fabrication of carbon dots for cellular imaging and anti-Counterfeiting applications. ACS Omega 2021, 6, 3232–3237. [Google Scholar] [CrossRef]
- Gao, A.; Yan, J.; Wang, Z.; Liu, P.; Wu, D. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 2020, 12, 2569–2577. [Google Scholar] [CrossRef]
- Zuo, M.Z.; Qian, W.R.; Li, T.H.; Hu, X.Y.; Jiang, J.L. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces 2018, 10, 39214–39221. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Q.X.; Wu, J.; Jing, J.; Zhang, W.G. Enhanced fluorescence characteristics of SrAl2O4: Eu2+, Dy3+ phosphor by co-doping Gd3+ and anti-counterfeiting application. Nanomaterials 2023, 13, 2034. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Tu, D.T.; Ma, E.; Zhu, H.M. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Du, S.R.; Zheng, X.Y.; Lyu, G.M.; Sun, L.D. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Valiev, R.R.; Ohulchanskyy, T.Y.; Ågren, H.; Yang, C.H. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150–4167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Q.; Li, S.Q.; Yu, S.J.; Chen, S.R.; Yan, Y.Y. Single-mode-tuned tricolor emissions of upconversion/afterglow hybrids for anticounterfeiting applications. Nanomaterials 2022, 12, 3123. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, S.; Wang, Y.; Xu, J.H.; Zhang, S. Printable, room-temperature self-healing and full-color-tunable emissive composites for transparent panchromatic display and flexible high-level anti-counterfeiting. Chem. Eng. J. 2022, 431, 133728. [Google Scholar] [CrossRef]
- Shao, Q.Y.; Zhang, G.T.; Ouyang, L.L.; Hu, Y.Q.; Dong, Y. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature. Nanoscale 2017, 9, 12132–12141. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Meng, Z.K.; Guo, Z.; Wang, Z.B.; Cao, J.J. Achieving excitation wavelength-power-dependent colorful luminescence via multiplexing of dual lanthanides in fluorine oxide particles for multilevel anticounterfeiting. Dalton Trans. 2023, 52, 14132–14141. [Google Scholar] [CrossRef]
- Tyminski, A.; Martín, I.R.; Grzyb, T. Upconversion in detail: Multicolor emission of Yb/Er/Tm-doped nanoparticles under 800, 975, 1208, and 1532 nm excitation wavelengths. Part. Part. Syst. Char. 2020, 37, 2000068. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Cheng, Y.; Xu, J.; Lin, H.; Wang, Y.S. Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs: The inert core matters. Nanoscale 2021, 13, 6569–6576. [Google Scholar] [CrossRef]
- Zhou, J.J.; Wen, S.H.; Liao, J.Y.; Clarke, C.; Tawfik, S.A. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics 2018, 12, 154. [Google Scholar] [CrossRef]
- Wang, Z.J.; Christiansen, J.; Wezendonk, D.; Xie, X.B.; van Huis, M.A. Thermal enhancement and quenching of upconversion emission in nanocrystals. Nanoscale 2019, 11, 12188–12197. [Google Scholar] [CrossRef] [PubMed]
- Li, D.H.; Wang, W.R.; Liu, X.F.; Jiang, C.; Qiu, J.R. Discovery of non-reversible thermally enhanced upconversion luminescence behavior in rare-earth doped nanoparticles. J. Mater. Chem. C 2019, 7, 4336–4343. [Google Scholar] [CrossRef]
- Cui, X.S.; Cheng, Y.; Lin, H.; Huang, F.; Wu, Q.P. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles. Nanoscale 2017, 9, 13794–13799. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Huang, P.; Gong, Z.L.; Tu, D.; Xu, J. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018, 9, 3462. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.Z.; Tian, B.L.; Zhang, W.B.; He, L. Facile synthesis of KaCs1-aPbBr3@ molecular sieve SBA-15 composite with improved luminescence and wet/thermal stability. Colloid Surf. A 2022, 648, 129258. [Google Scholar] [CrossRef]
- Naresh, V.; Adusumalli, V.N.K.B.; Park, Y.I.; Lee, N. NIR triggered NaYF4:Yb3+,Tm3+@NaYF4/CsPb(Br1-x/Ix)3 composite for up-converted white-light emission and dual-model anticounterfeiting applications. Mater. Today Chem. 2022, 23, 100752. [Google Scholar] [CrossRef]
- Du, K.M.; Zhang, M.L.; Li, Y.; Li, H.W.; Liu, K. Embellishment of upconversion nanoparticles with ultrasmall perovskite quantum dots for full-color tunable, dual-modal luminescence anticounterfeiting. Adv. Opt. Mater. 2021, 9, 2100814. [Google Scholar] [CrossRef]
- Wu, Y.A.; Li, C.X.; Yang, D.M.; Lin, J. Rare earth β-NaGdF4 fluorides with multiform morphologies: Hydrothermal synthesis and luminescent properties. J. Colloid. Interf. Sci. 2011, 354, 429–436. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S.W.; Tong, C.; Tan, H.H.; Xu, L.J. Preparation of NaYF4:Yb3+, Tm3+@NaGdF4:Ce3+, Eu3+ double-jacket microtubes for dual-mode fluorescent anti-counterfeiting. Trans. Nonferr. Met. Soc. 2020, 30, 3333–3346. [Google Scholar] [CrossRef]
- Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M. Quenching of the upconversion luminescence of NaYF4:Yb3+, Er3+ and NaYF4:Yb3+, Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746–11757. [Google Scholar] [CrossRef]
- Zuo, J.; Li, Q.Q.; Xue, B.; Li, C.X.; Chang, Y.L. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941–7946. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, J.A.; Liu, X.G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Edit. 2010, 49, 7456–7560. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.J.; Li, T.R.; Zhou, X.P.; Dong, X.; Shorokhov, A.V. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J. 2019, 358, 30–39. [Google Scholar] [CrossRef]
- Melle, S.; Calderón, O.G.; Laurenti, M.; Mendez-Gonzalez, D.; Egatz-Gómez, A. Forster resonance energy transfer distance dependence from upconverting nanoparticles to quantum dots. J. Phys. Chem. C 2018, 122, 18751–18758. [Google Scholar] [CrossRef]
- Zhang, W.N.; Li, J.; Lei, H.X.; Li, B.J. Temperature-dependent forster resonance energy transfer from upconversion nanoparticles to quantum dots. Opt. Express 2020, 28, 12450–12459. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.N.; Fu, J.; Wen, X.; Sun, B.; Wu, J. Near-infrared-excitable perovskite quantum dots via coupling with upconversion nanoparticles for dual-model anti-counterfeiting. New J. Chem. 2018, 42, 12353–12356. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Wei, H.P.; Liang, P.; Xu, X.K.; Zhang, X.C. Near-infrared-excited multicolor afterglow in carbon dots-eased room-temperature afterglow materials. Angew. Chem. Int. Edit. 2021, 60, 22253–22259. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, G.C.; Liu, K.L.; You, W.W.; Jin, S.Y. Efficient dual-mode emissions of high-concentration erbium ions doped lead-free halide double perovskite single crystals. J. Alloys Compd. 2022, 895, 162601. [Google Scholar] [CrossRef]
- Zhou, J.M.; Zhu, X.F.; Cheng, A.Y.; Wang, Y.X.; Wang, R.Q. Ferrocene functionalized upconversion nanoparticle nanosystem with efficient near-infrared-light-promoted fenton-like reaction for tumor growth suppression. Inorg. Chem. 2021, 59, 9177–9187. [Google Scholar] [CrossRef]
- Long, N.B.; Fu, Y.Q.; Xu, T.X.; Ding, D.S.; Zhang, S.Q. Nanocrystallization and optical properties of CsPbBr3-xIx perovskites in chalcogenide glasses. J. Eur. Ceram. Soc. 2021, 41, 4584–4589. [Google Scholar] [CrossRef]
- Xiang, X.Q.; Lin, H.; Xu, J.; Cheng, Y.; Wang, C.Y. CsPb(Br, I)3 embedded glass: Fabrication, tunable luminescence, improved stability and wide-color gamut LCD application. Chem. Eng. J. 2019, 38, 122255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Gao, Y.; Cheng, L.; Li, Y.; Xu, S.; Chen, B. The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications. Nanomaterials 2023, 13, 3102. https://doi.org/10.3390/nano13243102
Zhang Q, Gao Y, Cheng L, Li Y, Xu S, Chen B. The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications. Nanomaterials. 2023; 13(24):3102. https://doi.org/10.3390/nano13243102
Chicago/Turabian StyleZhang, Qun, Yuefeng Gao, Lihong Cheng, You Li, Sai Xu, and Baojiu Chen. 2023. "The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications" Nanomaterials 13, no. 24: 3102. https://doi.org/10.3390/nano13243102
APA StyleZhang, Q., Gao, Y., Cheng, L., Li, Y., Xu, S., & Chen, B. (2023). The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications. Nanomaterials, 13(24), 3102. https://doi.org/10.3390/nano13243102