Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of POM-Ag0 NPs
2.1.1. Preparation of Reduced POM Solutions
2.1.2. Synthesis of NPs
2.2. Preparation of Hybrid Material
2.3. Preparation of Hybrid Electrodes and Assembly of Coin Cells
2.4. Instrumentation
3. Results and Discussion
3.1. Synthesis and Morphological Characterization of POM-Ag0 NPs
3.1.1. Influence of the Concentration of Ag+
3.1.2. Influence of the Reducing Power of the POM
3.2. Physicochemical Characterization of POM-Ag0 NPs
3.2.1. Identification of Metallic Silver on POM-Ag0 NPs
3.2.2. Presence of POM on POM-Ag0 NPs
3.3. Preparation and Characterization of AC/POM-Ag0 NPs Hybrid Material
3.3.1. Physisorption of POM-Ag0 NPs on AC
3.3.2. Electrochemical Properties of Hybrid Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdullah, N.H.; Shameli, K.; Abdullah, E.C.; Abdullah, L.C. Solid Matrices for Fabrication of Magnetic Iron Oxide Nanocomposites: Synthesis, Properties, and Application for the Adsorption of Heavy Metal Ions and Dyes. Compos. Part B Eng. 2018, 162, 538–568. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, L.; Li, S. Review of Electrical Properties for Polypropylene Based Nanocomposite. Compos. Commun. 2018, 10, 221–225. [Google Scholar] [CrossRef]
- Mensah, B.; Gupta, K.C.; Kim, H.; Wang, W.; Jeong, K.-U.; Nah, C. Graphene-Reinforced Elastomeric Nanocomposites: A Review. Polym. Test. 2018, 68, 160–184. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, E.; Park, Y.; Kim, J.; Ryu, W.; Rho, J.; Kim, K. Photodeposited Metal-Semiconductor Nanocomposites and Their Applications. J. Mater. 2018, 4, 83–94. [Google Scholar] [CrossRef]
- Gomez-Romero, P. Hybrid Organic–Inorganic Materials—In Search of Synergic Activity. Adv. Mater. 2001, 13, 163–174. [Google Scholar] [CrossRef]
- Gómez-Romero, P.; Sanchez, C. (Eds.) Functional Hybrid Materials; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Deng, W.; Xu, Y.; Zhang, X.; Li, C.; Liu, Y.; Xiang, K.; Chen, H. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O Heterostructure as Cathode for High-Performance Aqueous Zn-Ion Batteries. J. Alloys Compd. 2022, 903, 163824. [Google Scholar] [CrossRef]
- Deng, W.-N.; Li, Y.-H.; Xu, D.-F.; Zhou, W.; Xiang, K.-X.; Chen, H. Three-Dimensional Hierarchically Porous Nitrogen-Doped Carbon from Water Hyacinth as Selenium Host for High-Performance Lithium–Selenium Batteries. Rare Met. 2022, 41, 3432–3445. [Google Scholar] [CrossRef]
- Xiao, J.; Li, H.; Zhang, H.; He, S.; Zhang, Q.; Liu, K.; Jiang, S.; Duan, G.; Zhang, K. Nanocellulose and Its Derived Composite Electrodes toward Supercapacitors: Fabrication, Properties, and Challenges. J. Bioresour. Bioprod. 2022, 7, 245–269. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, B.; Feng, L.; Zheng, J.; You, B.; Chen, J.; Zhao, X.; Zhang, C.; Jiang, S.; He, S. Progress in the Use of Organic Potassium Salts for the Synthesis of Porous Carbon Nanomaterials: Microstructure Engineering for Advanced Supercapacitors. Nanoscale 2022, 14, 8216–8244. [Google Scholar] [CrossRef]
- Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Zhang, C.; Ding, Y.; Han, J.; Jiang, S.; He, S. In Situ Growth of N/O-Codoped Carbon Nanotubes in Wood-Derived Thick Carbon Scaffold to Boost the Capacitive Performance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 131018. [Google Scholar] [CrossRef]
- Wen, X.; Luo, J.; Xiang, K.; Zhou, W.; Zhang, C.; Chen, H. High-Performance Monoclinic WO3 Nanospheres with the Novel NH4+ Diffusion Behaviors for Aqueous Ammonium-Ion Batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Romero, P.; Ayyad, O.; Suárez-Guevara, J.; Muñoz-Rojas, D. Hybrid Organic–Inorganic Materials: From Child’s Play to Energy Applications. J. Solid. State Electrochem. 2010, 14, 1939–1945. [Google Scholar] [CrossRef]
- Cuentas-Gallegos, A.K.; Gómez-Romero, P. Triple Hybrid Materials: A Novel Concept within the Field of Organic–Inorganic Hybrids. J. Power Sources 2006, 161, 580–586. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Hemesh, A.; Biendicho, J.J.; Martinez-Soria, L.; Rueda-Garcia, D.; Morante, J.R.; Ballesteros, B.; Gomez-Romero, P. Rational Design of MXene/Activated Carbon/Polyoxometalate Triple Hybrid Electrodes with Enhanced Capacitance for Organic-Electrolyte Supercapacitors. J. Colloid Interface Sci. 2022, 623, 947–961. [Google Scholar] [CrossRef]
- Shubhadarshinee, L.; Mohapatra, P.; Jali, B.R.; Barick, A.K.; Mohapatra, P. Synthesis and Characterization of a Novel Silver Nanoparticles Decorated Functionalized Single-Walled Carbon Nanotubes Nanohybrids Embedded Polyaniline Ternary Nanocomposites: Thermal, Dielectric, and Sensing Properties. Polym.-Plast. Technol. Mater. 2023, 62, 197–217. [Google Scholar] [CrossRef]
- Zang, D.; Huo, Z.; Yang, S.; Li, Q.; Dai, G.; Zeng, M.; Ruhlmann, L.; Wei, Y. Layer by Layer Self-Assembled Hybrid Thin Films of Porphyrin/Polyoxometalates@Pt Nanoparticles for Photo & Electrochemical Application. Mater. Today Commun. 2022, 31, 103811. [Google Scholar] [CrossRef]
- Gao, Y.; Choudhari, M.; Such, G.K.; Ritchie, C. Polyoxometalates as Chemically and Structurally Versatile Components in Self-Assembled Materials. Chem. Sci. 2021, 13, 2510–2527. [Google Scholar] [CrossRef]
- Ueda, T. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem 2018, 5, 823–838. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P.; et al. Polyoxometalates (POMs): From Electroactive Clusters to Energy Materials. Energy Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S. High-Performance Electrochemical Supercapacitors Based on Polyoxometalate Integrated into Polyaniline and Activated Carbon Nanohybrid. Ionics 2023, 1–15. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, L.; Hu, J.; Streb, C.; Song, Y.-F. Polyoxometalate-Functionalized Nanocarbon Materials for Energy Conversion, Energy Storage and Sensor Systems. Energy Environ. Sci. 2015, 8, 776–789. [Google Scholar] [CrossRef]
- Bogeat, A.B. Understanding and Tuning the Electrical Conductivity of Activated Carbon: A State-of-the-Art Review. Crit. Rev. Solid. State 2019, 46, 1–37. [Google Scholar] [CrossRef]
- Gandla, D.; Wu, X.; Zhang, F.; Wu, C.; Tan, D.Q. High-Performance and High-Voltage Supercapacitors Based on N-Doped Mesoporous Activated Carbon Derived from Dragon Fruit Peels. ACS Omega 2021, 6, 7615–7625. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Zhang, Y.; Cui, X.; Lei, H.; Li, G. Heteroatom-Doped Hierarchically Porous Carbons Derived from Cucumber Stem as High-Performance Anodes for Sodium-Ion Batteries. J. Mater. Sci. 2019, 54, 5641–5657. [Google Scholar] [CrossRef]
- Saadat, N.; Dhakal, H.N.; Tjong, J.; Jaffer, S.; Yang, W.; Sain, M. Recent Advances and Future Perspectives of Carbon Materials for Fuel Cell. Renew. Sustain. Energy Rev. 2020, 138, 110535. [Google Scholar] [CrossRef]
- Lee, K.-S.; Lee, K.J.; Kang, Y.S.; Shin, T.J.; Sung, Y.-E.; Ahn, D. Effects of Ag-Embedment on Electronic and Ionic Conductivities of LiMnPO4 and Its Performance as a Cathode for Lithium-Ion Batteries. Nanoscale 2015, 7, 13860–13867. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Kong, L.; Kang, L.; Ran, F. Supercapacitor Electrode of Nano-Co3O4 Decorated with Gold Nanoparticles via in-Situ Reduction Method. J. Power Sources 2017, 363, 1–8. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, T.; Li, X.; Pang, H.; Xue, H. Noble Metal-Based Materials in High-Performance Supercapacitors. Inorg. Chem. Front. 2016, 4, 33–51. [Google Scholar] [CrossRef]
- Mitchell, S.G.; de la Fuente, J.M. The Synergistic Behavior of Polyoxometalates and Metal Nanoparticles: From Synthetic Approaches to Functional Nanohybrid Materials. J. Mater. Chem. 2012, 22, 18091–18100. [Google Scholar] [CrossRef]
- Wang, Y.; Weinstock, I.A. Polyoxometalate-Decorated Nanoparticles. Chem. Soc. Rev. 2012, 41, 7479–7496. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Yamaguchi, K.; Suzuki, K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew. Chem. 2023, 135, e202214506. [Google Scholar] [CrossRef]
- Li, J.-S.; Dong, H.-Q.; Li, S.-L.; Li, R.-H.; Dai, Z.-H.; Bao, J.-C.; Lan, Y.-Q. Polyoxometalate-Assisted Fabrication of the Pd Nanoparticle/Reduced Graphene Oxide Nanocomposite with Enhanced Methanol-Tolerance for the Oxygen Reduction Reaction. New J. Chem. 2015, 40, 914–918. [Google Scholar] [CrossRef]
- Suo, L.; Gao, W.; Du, Y.; Wang, R.; Wu, L.; Bi, L. Preparation of Polyoxometalate Stabilized Gold Nanoparticles and Composite Assembly with Graphene Oxide: Enhanced Electrocatalytic Performance. New J. Chem. 2015, 40, 985–993. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, Y.; Bai, Y.; Chen, Z.; Li, J.; Feng, F. In Situ Electrochemical Reduction Assisted Assembly of a Graphene-Gold Nanoparticles@polyoxometalate Nanocomposite Film and Its High Response Current for Detection of Hydrogen Peroxide. Electrochim. Acta 2019, 300, 380–388. [Google Scholar] [CrossRef]
- Gabas, I.M.; Stepien, G.; Moros, M.; Mitchell, S.G.; Fuente, J.M. de la In Vitro Cell Cytotoxicity Profile and Morphological Response to Polyoxometalate-Stabilised Gold Nanoparticles. New J. Chem. 2016, 40, 1039–1047. [Google Scholar] [CrossRef]
- Eren, T.; Atar, N.; Yola, M.; Karimi-Maleh, H.; Çolak, A.; Olgun, A. Facile and Green Fabrication of Silver Nanoparticles on a Polyoxometalate for Li-Ion Battery. Ionics 2015, 21, 2193–2199. [Google Scholar] [CrossRef]
- Varga, G.M.; Papaconstantinou, E.; Pope, M.T. Heteropoly Blues. IV. Spectroscopic and Magnetic Properties of Some Reduced Polytungstates. Inorg. Chem. 1970, 9, 662–667. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph Version 1.2.15. 2021. Available online: http://www.effemm2.de/spectragryph/ (accessed on 20 January 2021).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and Collaborative Approach to Problem Solving Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Keita, B.; Liu, T.; Nadjo, L. Synthesis of Remarkably Stabilized Metal Nanostructures Using Polyoxometalates. J. Mater. Chem. 2008, 19, 19–33. [Google Scholar] [CrossRef]
- Troupis, A.; Gkika, E.; Hiskia, A.; Papaconstantinou, E. Photocatalytic Reduction of Metals Using Polyoxometallates: Recovery of Metals or Synthesis of Metal Nanoparticles. Comptes Rendus Chim. 2006, 9, 851–857. [Google Scholar] [CrossRef]
- Zoladek, S.; Rutkowska, I.A.; Skorupska, K.; Palys, B.; Kulesza, P.J. Fabrication of Polyoxometallate-Modified Gold Nanoparticles and Their Utilization as Supports for Dispersed Platinum in Electrocatalysis. Electrochim. Acta 2011, 56, 10744–10750. [Google Scholar] [CrossRef]
- Hsu-Yao, T.; Browne, K.P.; Honesty, N.; Tong, Y.J. Polyoxometalate-Stabilized Pt Nanoparticles and Their Electrocatalytic Activities. Phys. Chem. Chem. Phys. 2011, 13, 7433–7438. [Google Scholar] [CrossRef]
- Garcia, M.A. Surface Plasmons in Metallic Nanoparticles: Fundamentals and Applications. J. Phys. D Appl. Phys. 2011, 44, 283001. [Google Scholar] [CrossRef]
- Desai, R.; Mankad, V.; Gupta, S.K.; Jha, P.K. Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment. Nanosci. Nanotechnol. Let. 2012, 4, 30–34. [Google Scholar] [CrossRef]
- Troupis, A.; Triantis, T.; Hiskia, A.; Papaconstantinou, E. Rate-Redox-Controlled Size-Selective Synthesis of Silver Nanoparticles Using Polyoxometalates. Eur. J. Inorg. Chem. 2008, 2008, 5579–5586. [Google Scholar] [CrossRef]
- Zhang, G.; Keita, B.; Biboum, R.N.; Miserque, F.; Berthet, P.; Dolbecq, A.; Mialane, P.; Catala, L.; Nadjo, L. Synthesis of Various Crystalline Gold Nanostructures in Water: The Polyoxometalate β-[H4PMo12O40]3− as the Reducing and Stabilizing Agent. J. Mater. Chem. 2009, 19, 8639–8644. [Google Scholar] [CrossRef]
- Yang, L.; Shen, Y.; Xie, A.; Liang, J.; Li, S.; Zhang, Q. Size- and Shape-Controlled Synthesis and Assembly of a Silver Nanocomplex in UV-Irradiated TSA Solution. Eur. J. Inorg. Chem. 2006, 2006, 4658–4664. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Dhayagude, A.C.; Newase, S.K.; Joshi, S.S.; Kapadnis, B.P.; Kapoor, S. Preparation of Silver Nanoparticles in the Presence of Polyoxometalates. Mater. Sci. Eng. C 2019, 94, 437–444. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, L.; Noeske, M.; Richards, R.M.; Kortz, U. Polyoxotungstate Stabilized Palladium, Gold, and Silver Nanoclusters: A Study of Cluster Stability, Catalysis, and Effects of the Stabilizing Anions. J. Colloid Interf. Sci. 2013, 394, 157–165. [Google Scholar] [CrossRef]
- Sadakane, M.; Steckhan, E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem. Rev. 1998, 98, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Bayesov, A.; Tuleshova, E.; Tukibayeva, A.; Aibolova, G.; Baineyeva, F. Electrochemical Behavior of Silver Electrode in Sulphuric Acidic Solution During Anodic Polarization. Orient J. Chem. 2015, 31, 1867–1872. [Google Scholar] [CrossRef]
- Zoladek, S.; Blicharska-Sobolewska, M.; Krata, A.A.; Rutkowska, I.A.; Wadas, A.; Miecznikowski, K.; Negro, E.; Vezzù, K.; Noto, V.D.; Kulesza, P.J. Heteropolytungstate-Assisted Fabrication and Deposition of Catalytic Silver Nanoparticles on Different Reduced Graphene Oxide Supports: Electroreduction of Oxygen in Alkaline Electrolyte. J. Electroanal. Chem. 2020, 875, 114694. [Google Scholar] [CrossRef]
- Campbell, F.W.; Belding, S.R.; Baron, R.; Xiao, L.; Compton, R.G. The Hydrogen Evolution Reaction at a Silver Nanoparticle Array and a Silver Macroelectrode Compared: Changed Electrode Kinetics between the Macro- and Nanoscales. J. Phys. Chem. C 2009, 113, 14852–14857. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Yu, X.; Zhang, G.; Ma, Y.; Yao, J. Facile Synthesis of a Ag Nanoparticle/Polyoxometalate/Carbon Nanotube Tri-Component Hybrid and Its Activity in the Electrocatalysis of Oxygen Reduction. J. Mater. Chem. 2011, 21, 14917–14924. [Google Scholar] [CrossRef]
- Li, S.; Yu, X.; Zhang, G.; Ma, Y.; Yao, J.; Keita, B.; Louis, N.; Zhao, H. Green Chemical Decoration of Multiwalled Carbon Nanotubes with Polyoxometalate-Encapsulated Gold Nanoparticles: Visible Light Photocatalytic Activities. J. Mater. Chem. 2010, 21, 2282–2287. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational Investigations of Polyoxometalates. 2. Evidence for Anion-Anion Interactions in Molybdenum(VI) and Tungsten(VI) Compounds Related to the Keggin Structure. Inorg. Chem. 1983, 22, 207–216. [Google Scholar] [CrossRef]
- Pope, M. Heteropoly and Isopoly Oxometalates; Springer: Berlin, Germany, 1983. [Google Scholar] [CrossRef]
- Teague, C.M.; Li, X.; Biggin, M.E.; Lee, L.; Kim, J.; Gewirth, A.A. Vibrational Spectroscopy of a Keggin Polyoxometalate on Metal Electrode Surfaces. J. Phys. Chem. B 2004, 108, 1974–1985. [Google Scholar] [CrossRef]
- Berbeć, S.; Żołądek, S.; Kulesza, P.J.; Pałys, B. Silver Nanoparticles Stabilized by Polyoxotungstates. Influence of the Silver—Polyoxotungstate Molar Ratio on UV/Vis Spectra and SERS Characteristics. J. Electroanal. Chem. 2019, 854, 113537. [Google Scholar] [CrossRef]
- He, S.; Chen, W. Application of Biomass-Derived Flexible Carbon Cloth Coated with MnO2 Nanosheets in Supercapacitors. J. Power Sources 2015, 294, 150–158. [Google Scholar] [CrossRef]
- Dubal, D.P.; Holze, R.; Gomez-Romero, P. Three-Dimensional Arrays of 1D MnO2 Nanocrystals for All-Solid-State Asymmetric Supercapacitors. ChemPlusChem 2015, 80, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Allagui, A.; Freeborn, T.J.; Elwakil, A.S.; Maundy, B.J. Reevaluation of Performance of Electric Double-Layer Capacitors from Constant-Current Charge/Discharge and Cyclic Voltammetry. Sci. Rep. 2016, 6, 38568. [Google Scholar] [CrossRef] [PubMed]
UV-vis | STEM Gaussian Fit | DLS | ||||||
---|---|---|---|---|---|---|---|---|
redPOM | Ratio Ag+/redPOM | Plasmon Band (nm) | Mean Size (nm) | Std. Dev. | Particle Count | PDI | Mean Size Number (nm) | Mean PDI |
PW124− | 0.1 | 427.50 | 43.07 | 32.81 | 140 | 0.58 | 39.17 | 0.21 |
PW124− | 1 | 395.10 | 27.41 | 5.90 | 221 | 0.05 | 20.40 | 0.29 |
PW124− | 10 | 400.50 | 32.51 | 22.59 | 143 | 0.48 | ||
PW125− | 1 | 401.10 | 27.62 | 11.23 | 104 | 0.17 | 28.62 | 0.22 |
SiW126− | 1 | 408.00 | 12.12 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goberna-Ferrón, S.; Cots, L.; Perxés Perich, M.; Zhu, J.-J.; Gómez-Romero, P. Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon. Nanomaterials 2023, 13, 2241. https://doi.org/10.3390/nano13152241
Goberna-Ferrón S, Cots L, Perxés Perich M, Zhu J-J, Gómez-Romero P. Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon. Nanomaterials. 2023; 13(15):2241. https://doi.org/10.3390/nano13152241
Chicago/Turabian StyleGoberna-Ferrón, Sara, Laia Cots, Marta Perxés Perich, Jun-Jie Zhu, and Pedro Gómez-Romero. 2023. "Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon" Nanomaterials 13, no. 15: 2241. https://doi.org/10.3390/nano13152241
APA StyleGoberna-Ferrón, S., Cots, L., Perxés Perich, M., Zhu, J. -J., & Gómez-Romero, P. (2023). Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon. Nanomaterials, 13(15), 2241. https://doi.org/10.3390/nano13152241