Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MIL-88A Polyhedron
2.2. Synthesis of Ni/Fe LDH Polyhedron
2.3. Synthesis of Ce-Ni/Fe LDH Capsule
2.4. Synthesis of S@Ce-Ni/Fe LDH
2.5. Preparation of Li2S6 Solution
2.6. Materials Characterization
2.7. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.-H.; Tan, C.-L.; Sindoro, M.; Zhang, H. Hybrid Micro-/Nano-Structures Derived From Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chem. Soc. Rev. 2017, 46, 2660–2677. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Fu, Y.-Z.; Chung, S.-H.; Zu, C.-X.; Su, Y.-S. Rechargeable Lithium-Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-L.; Li, Y.; Ren, J.; Rao, D.-W.; Zheng, Q.-J.; Zhou, L.; Lin, D. CNT-Assembled Dodecahedra Hydroxide Nanosheet Shell Enabled Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Nano Energy 2018, 55, 82–92. [Google Scholar] [CrossRef]
- Bao, W.-Z.; Liu, L.; Wang, C.-Y.; Choi, S.-H.; Wang, D.; Wang, G.-X. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries. Adv. Energy Mater. 2017, 8, 1702485. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, J.-Q.; Zhang, Q.; Mai, L.-Q. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Adv. Mater. 2017, 29, 1601759. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, W.; Wen, Z.; Sun, Y.-M.; Wang, H.-L. Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery. J. Am. Chem. Soc. 2015, 137, 12946–12953. [Google Scholar] [CrossRef]
- Lin, H.-B.; Zhang, S.-L.; Zhang, T.-R.; Ye, H.-L.; Yao, Q.-F.; Zheng, G.-Y.; Lee, J.Y. Simultaneous Cobalt and Phosphorous Doping of MoS2 for Improved Catalytic Performance on Polysulfide Conversion in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1902096. [Google Scholar] [CrossRef]
- Chen, T.; Ma, L.-B.; Cheng, B.-R.; Chen, R.-P.; Hu, Y.; Zhu, G.-Y.; Wang, Y.-R.; Liang, J.; Tie, Z.-X.; Liu, J.; et al. Metallic and Polar Co9S8 Inlaid Carbon Hollow Nanopolyhedra as Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. Nano Energy 2017, 38, 239–248. [Google Scholar] [CrossRef]
- Li, Q.-C.; Liu, H.; Jin, B.; Li, L.; Sheng, Q.-D.; Cui, M.-Y.; Li, Y.-Y.; Lang, X.-Y.; Zhu, Y.-F.; Zhao, L.-J.; et al. Anchoring Polysulfides via a CoS2/NC@1T MoS2 Modified Separator for High-Performance Lithium-Sulfur Batteries. Inorg. Chem. Front. 2023, 10, 959–971. [Google Scholar] [CrossRef]
- Sun, W.-W.; Liu, C.; Li, Y.-J.; Luo, S.-Q.; Liu, S.-K.; Hong, X.-B.; Xie, K.; Liu, Y.M.; Tan, X.-J.; Zheng, C.-M. Rational Construction of Fe2N@C Yolk-Shell Nanoboxes as Multifunctional Hosts for Ultralong Lithium-Sulfur Batteries. ACS Nano 2019, 13, 12137–12147. [Google Scholar] [CrossRef]
- Cao, Z.-X.; Jia, J.-Y.; Chen, S.-N.; Li, H.-H.; Sang, M.; Yang, M.-G.; Wang, X.-X.; Yang, S.-T. Integrating Polar and Conductive Fe2O3-Fe3C Interface with Rapid Polysulfide Diffusion and Conversion for High-Performance Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 39772–39781. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Sui, Z.-Y.; Amin, K.; Lin, L.-Y.; Wang, H.-Y.; Han, B.-H. Investigating the Electrocatalysis of a Ti3C2/Carbon Hybrid in Polysulfide Conversion of Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 13904–13913. [Google Scholar] [CrossRef]
- Xiao, D.-J.; Li, Q.; Zhang, H.-F.; Ma, Y.-Y.; Lu, C.-X.; Chen, C.-M.; Liu, Y.-D.; Yuan, S.-X. A Sulfur Host Based on Cobalt-Graphitic Carbon Nanocages for High Performance Lithium-Sulfur Batteries. J. Mater. Chem. A 2017, 5, 24901. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Li, Z.; Chen, Y.; Gao, S.-Y.; Lou, X.-W. Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 10773–11077. [Google Scholar]
- Hwang, J.-Y.; Kim, H.-M.; Shin, S.-B.; Sun, Y.-K. Designing a High-Performance Lithium-Sulfur Batteries Based on Layered Double Hydroxides-Carbon Nanotubes Composite Cathode and a Dual-Functional Graphene-Polypropylene-Al2O3 Separator. Adv. Funct. Mater. 2018, 28, 1704294. [Google Scholar] [CrossRef]
- Chen, S.-X.; Luo, J.-H.; Li, N.-Y.; Han, X.-X.; Wang, J.; Deng, Q.; Zeng, Z.-L.; Deng, S.-G. Multifunctional LDH/Co9S8 Heterostructure Nanocages as High-Performance Lithium-Sulfur Battery Cathodes with Ultralong Lifespan. Energy Storage Mater. 2020, 30, 187–195. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Hu, H.; Li, Z.; Lou, X.-W. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2016, 55, 3982–3986. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.A.; Lohani, P.C.; Yoo, D.J.; Kim, H.J. Assembling Zinc Cobalt Hydroxide/Ternary Sulfides Heterostructure and Iron Oxide Nanorods on Three-dimensional Hollow Porous Carbon Nanofiber as High Energy Density Hybrid Supercapacitor. J. Energy Storage 2023, 60, 106713. [Google Scholar] [CrossRef]
- Poudel, M.B.; Lohani, P.C.; Acharya, D.; Kande, D.R.; Kim, A.A.; Yoo, D.J. MOF Derived Hierarchical ZnNiCo-LDH on Vapor Solid Phase Grown CuxO Nanowire Array as High Energy Density Asymmetric Supercapacitors. J. Energy Storage 2023, 72, 108220. [Google Scholar] [CrossRef]
- Poudel, M.B.; Shin, M.; Kim, H.J. Interface Engineering of MIL-88 Derived MnFe-LDH and MnFe2O3 on Three-dimensional Carbon Nanofibers for the Efficient Adsorption of Cr(VI), Pb(II), and As(III) Ions. Sep. Purif. Technol. 2022, 287, 120463. [Google Scholar] [CrossRef]
- Xu, H.-J.; Shan, C.-F.; Wu, X.-X.; Sun, M.-Z.; Huang, B.-L.; Tang, Y.; Yan, C.-H. Fabrication of Layered Double Hydroxide Microcapsules Mediated by Cerium Doping in Metal-Organic Frameworks for Boosting Water Splitting. Energy Environ. Sci. 2020, 13, 2949. [Google Scholar] [CrossRef]
- Baumann, A.E.; Aversa, G.E.; Roy, A.; Falk, M.L.; Bedford, N.M.; Thoi, V.S. Promoting Sulfur Adsorption Using Surface Cu Sites in Metal-Organic Frameworks for Lithium Sulfur Batteries. J. Mater. Chem. A 2018, 6, 4811–4821. [Google Scholar] [CrossRef]
- Xu, F.-C.; Dong, C.-W.; Jin, B.; Li, H.; Wen, Z.; Jiang, Q. MOF-Derived LDH Wrapped with rGO as an Efficient Sulfur Host for Lithium-Sulfur Batteries. J. Electroanal. Chem. 2020, 876, 114545. [Google Scholar] [CrossRef]
- Mou, J.-R.; Li, Y.-J.; Ou, L.-Q.; Huang, J.-L. A Highly-Efficient Electrocatalyst for Room Temperature Sodium-Sulfur Batteries: Assembled Nitrogen-Doped Hollow Porous Carbon Spheres Decorated with Ultrafine α-MoC1−x Nanoparticles. Energy Storage Mater. 2022, 52, 111–119. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, D.-K.; Wu, Q.-K.; Fan, B.; Zhu, X.-J.; Dan, J.-C.; Li, N.-W.; Lei, W.; Li, L.-G. Enhancing the Adsorption and Catalytic Conversion of Polysulfides by Nitrogen Doped Carbon Micro-Flowers Embedded with Mo2C Nanoparticles. Carbon 2021, 178, 371–381. [Google Scholar] [CrossRef]
- Zhao, H.-P.; Du, X.-Q.; Zhang, X.-S. Interfacing or Doping? Role of Ce in Water Oxidation Reaction and Urea Oxidation Reaction of N-Ni3S2. J. Alloys Compd. 2022, 925, 166662. [Google Scholar] [CrossRef]
- Liu, M.-J.; Min, K.-A.; Han, B.-C.; Lee, L.Y.S. Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe-Layered Double Hydroxide. Adv. Energy Mater. 2021, 11, 2101281. [Google Scholar] [CrossRef]
- Mohammed, A.-T.; Dong, Y.-T.; Zhang, R.; Zhang, Y.-Y.; Zhang, J.-M. Understanding the High-Performance Fe(OH)3@GO Nanoarchitecture as Effective Sulfur Hosts for the High Capacity of Lithium-Sulfur Batteries. Appl. Surf. Sci. 2021, 538, 148032. [Google Scholar]
- Wen, C.-Y.; Zheng, X.-Z.; Li, X.-Y.; Yuan, M.-W.; Li, H.-F.; Sun, G.-B. Rational Design of 3D Hierarchical MXene@AlF3/Ni(OH)2 Nanohybrid for High-Performance Lithium-Sulfur Batteries. Chem. Eng. J. 2021, 409, 128102. [Google Scholar] [CrossRef]
- Zhu, W.-J.; Chen, W.-X.; Yu, H.-H.; Zeng, Y.; Ming, F.-W.; Liang, H.-F.; Wang, Z.C. NiCo/NiCo-OH and NiFe/NiFe-OH Core Shell Nanostructures for Water Splitting Electrocatalysis at Large Currents. Appl. Catal. B Environ. 2020, 278, 119326. [Google Scholar] [CrossRef]
- Chang, Y.-G.; Ren, Y.-M.; Zhu, L.-K.; Li, Y.; Li, T.; Ren, B.-Z. Preparation of Macadamia Nut Shell Porous Carbon and its Electrochemical Performance as Cathode Material for Lithium-Sulfur Batteries. Electrochim. Acta 2022, 420, 140454. [Google Scholar] [CrossRef]
- Ren, G.; Li, S.; Fan, Z.-X.; Warzywodac, J.; Fan, Z. Soybean-Derived Hierarchical Porous Carbon with Large Sulfur Loading and Sulfur Content for High-Performance Lithium-Sulfur Batteries. J. Mater. Chem. A 2016, 4, 16507–16515. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.-N.; Xu, Z.-F.; Xu, X.; Liao, T.; Tang, B.; Bai, Z.-C.; Dou, S.-X. Synergistically Enhanced Interfacial Interaction to Polysulfide via N,O Dual-Doped Highly Porous Carbon Microrods for Advanced Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 13573–13580. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-H.; Wang, Y.-X.; Chen, H.-Q.; Niu, B.-X.; Zhang, W.-C.; Wu, D.-P. Synergistic Mediation of Polysulfide Immobilization and Conversion by a Catalytic and Dual-Adsorptive System for High Performance Lithium-Sulfur Batteries. Chem. Eng. J. 2021, 406, 126802. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Ge, X.; Kang, Q.; Kong, Z.-K.; Wang, Y.-L.; Zhan, L. Vanadium Oxide Nanorods Embed in Porous Graphene Aerogel as High-Efficiency Polysulfide-Trapping-Conversion Mediator for High Performance Lithium-Sulfur Batteries. Chem. Eng. J. 2020, 393, 124570. [Google Scholar] [CrossRef]
- Shen, J.-D.; Xu, X.-J.; Liu, J.; Liu, Z.-B.; Li, F.-K.; Hu, R.-Z.; Liu, J.-W.; Hou, X.H.; Feng, Y.-Z.; Yu, Y.; et al. Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries. ACS Nano 2019, 13, 8986–8996. [Google Scholar] [CrossRef]
- Fei, B.; Zhang, C.-Q.; Cai, D.-P.; Zheng, J.-Y.; Chen, Q.-D.; Xie, Y.-L.; Zhu, L.-Z.; Cabot, A.; Zhan, H.B. Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium-Sulfur Batteries. ACS Nano 2021, 15, 6849–6860. [Google Scholar] [CrossRef]
- Song, Z.-H.; Jiang, W.-Y.; Jian, X.-G.; Hu, F.-Y. Advanced Nanostructured Materials for Electrocatalysis in Lithium-Sulfur Batteries. Nanomaterials 2022, 12, 4341. [Google Scholar] [CrossRef]
- Niu, S.-Q.; Hu, C.-C.; Liu, Y.-Y.; Zhao, Y.; Yin, F.-X. Nanoporous Co and N-Codoped Carbon Composite Derived from ZIF-67 for High-Performance Lithium-Sulfur Batteries. Nanomaterials 2021, 11, 1910. [Google Scholar] [CrossRef]
- Li, Y.J.; Fang, J.M.; Zhang, J.H.; Yang, J.F.; Yuan, R.M.; Chang, J.K.; Zheng, M.S.; Dong, Q.F. A Honeycomb-like Co@N-C Composite for Ultrahigh Sulfur Loading Li-S Batteries. ACS Nano 2017, 11, 11417–11424. [Google Scholar] [CrossRef]
- Ge, X.-L.; Li, C.-X.; Li, Z.-Q.; Yin, L.-W. Tannic Acid Tuned Metal-Organic Framework as a High-Efficiency Chemical Anchor of Polysulfide for Lithium-Sulfur Batteries. Electrochim. Acta 2018, 281, 700–709. [Google Scholar] [CrossRef]
- Kang, X.; Bernardo, L.D.; Yang, H.-L.; Torres, J.F.; Zhang, L. Metal-Organic Framework Microdomains in 3D Conductive Host as Polysulfide Inhibitor for Fast, Long-Cycle Li-S Batteries. Appl. Surf. Sci. 2021, 535, 147680. [Google Scholar] [CrossRef]
- Cui, G.-L.; Li, G.-R.; Luo, D.; Zhang, Y.-G.; Zhao, Y.; Wang, D.-R.; Wang, J.-Y.; Zhang, Z.; Wang, X.; Chen, Z.-W. Three-Dimensionally Ordered Macro-Microporous Metal Organic Frameworks with Strong Sulfur Immobilization and Catalyzation for High-Performance Lithium-Sulfur Batteries. Nano Energy 2020, 72, 104685. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Wang, L.; Chen, S.-X.; Zhu, X.-M.; Deng, Q.; Wang, J.; Zeng, Z.-L.; Deng, S.-G. Facile and Low-Temperature Strategy to Prepare Hollow ZIF-8/CNT Polyhedrons as High-Performance Lithium-Sulfur Cathodes. Chem. Eng. J. 2021, 404, 126579. [Google Scholar] [CrossRef]
- Liang, X.; Garsuch, A.; Nazar, L.F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries. Angew. Chem. 2015, 54, 3907–3911. [Google Scholar] [CrossRef]
- Li, H.; Zhao, M.; Jin, B.; Wen, Z.; Liu, H.-K.; Jiang, Q. Mesoporous Nitrogen-Doped Carbon Nanospheres as Sulfur Matrix and a Novel Chelate-Modified Separator for High-Performance Room-Temperature Na-S Batteries. Small 2020, 16, 1907464. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.-T.; Zhao, M.; Jin, B.; Wen, Z.; Xie, H.-M.; Dou, S.-X.; Jiang, Q. Suppressed Shuttle via Inhibiting the Formation of Long-Chain Lithium Polysulfides and Functional Separator for Greatly Improved Lithium-Organosulfur Batteries Performance. Adv. Energy Mater. 2020, 10, 1902695. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.-J.; Jin, B.; Cui, M.-Y.; Li, Y.-Y.; Li, Q.-C.; Li, L.; Sheng, Q.-D.; Lang, X.-Y.; Jin, E.-M.; et al. Coordinated Immobilization and Rapid Conversion of Polysulfide Enabled by a Hollow Metal Oxide/Sulfide/Nitrogen-Doped Carbon Heterostructure for Long-Cycle-Life Lithium-Sulfur Batteries. Small 2023, 2300950. [Google Scholar] [CrossRef]
- Han, G.-D.; Wang, X.; Yao, J.; Zhang, M.; Wang, J. The Application of Indium Oxide@CPM-5-C-600 Composite Material Derived from MOF in Cathode Material of Lithium Sulfur Batteries. Nanomaterials 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Peng, H.-J.; Song, Y.-W.; Li, B.-Q.; Xiao, Y.; Zhao, M.; Yuan, H.; Huang, J.-Q.; Zhang, Q. Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries. Angew. Chem. Int. Ed. 2020, 59, 17670–17675. [Google Scholar] [CrossRef]
- Wei, H.-J.; Liu, J.; Liu, Y.; Wang, L.; Li, L.-L.; Wang, F.; Ren, X.-Y.; Ren, F.-Z. Hollow Co-Fe LDH as an Effective Adsorption/Catalytic Bifunctional Sulfur Host For High-Performance Lithium-Sulfur Batteries. Compos. Commun. 2021, 28, 100973. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.-Q.; Zhou, Y.-B.; Wang, M.; Li, R.-L.; Yue, W.-B. Layered Bouble Hydroxides Used as the Sulfur Hosts for Lithium-Sulfur Batteries and the Influence of Metal Composition on Their Performance. J. Solid State Electr. 2023, 27, 797–807. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Li, Q.; Jin, B.; Liu, H. Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials 2023, 13, 2244. https://doi.org/10.3390/nano13152244
Wei H, Li Q, Jin B, Liu H. Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials. 2023; 13(15):2244. https://doi.org/10.3390/nano13152244
Chicago/Turabian StyleWei, Huiying, Qicheng Li, Bo Jin, and Hui Liu. 2023. "Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries" Nanomaterials 13, no. 15: 2244. https://doi.org/10.3390/nano13152244
APA StyleWei, H., Li, Q., Jin, B., & Liu, H. (2023). Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries. Nanomaterials, 13(15), 2244. https://doi.org/10.3390/nano13152244