MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Co(OH)F Nanoneedles Array
2.3. In Situ Generation of Co-ZIF on Co(OH)F Nanoneedles Array
2.4. In Situ Generation from Co-ZIF to NiCoMn-LDH on Co(OH)F Nanoneedles Array
2.5. Assembly of Asymmetric Supercapacitor Devices
3. Results
3.1. Physicochemical Properties
3.2. Optimization of Ni/Mn Ratio
3.3. Asymmetric Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Wen, H.; Huang, X.; Liu, Y. Renewable energy: A curse or blessing—International evidence. Sustainability 2023, 15, 11103. [Google Scholar] [CrossRef]
- Qiao, S.; Guo, Z.; Tao, Z.; Ren, Z. Analyzing the network structure of risk transmission among renewable, non-renewable energy and carbon markets. Renew. Energy 2023, 209, 206–217. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sust. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Guchhait, R.; Sarkar, B. Increasing growth of renewable energy: A state of art. Energies 2022, 16, 2665. [Google Scholar] [CrossRef]
- Le, T.S.; Nguyen, T.N.; Bui, D.K.; Ngo, T.D. Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage. Appl. Energy 2023, 336, 120817. [Google Scholar] [CrossRef]
- de León, C.M.; Ríos, C.; Brey, J.J. Cost of green hydrogen: Limitations of production from a stand-alone photovoltaic system. Int. J. Hydrogen Energy 2023, 48, 11885–11898. [Google Scholar] [CrossRef]
- Lehtola, T. Solar energy and wind power supply supported by battery storage and Vehicle to Grid operations. Electr. Pow. Syst. Res. 2024, 228, 110035. [Google Scholar] [CrossRef]
- Li, F.; Wang, D.; Liu, D.; Yang, S.; Sun, K.; Liu, Z.; Yu, H.; Qin, J. A comprehensive review on energy storage system optimal planning and benefit evaluation methods in smart grids. Sustainability 2023, 15, 9584. [Google Scholar] [CrossRef]
- Ismail, N.M.; Mishra, M.K. A multi-objective control scheme of a voltage source converter with battery–supercapacitor energy storage system used for power quality improvement. Int. J. Electr. Power Energy Syst. 2022, 142, 108253. [Google Scholar] [CrossRef]
- Wei, J.; Li, C.; Wu, Q.; Zhou, B.; Xu, D.; Huang, S. MPC-based DC-link voltage control for enhanced high-voltage ride-through of offshore DFIG wind turbine. Int. J. Electr. Power Energy Syst. 2021, 126, 106591. [Google Scholar] [CrossRef]
- Molahalli, V.; Chaithrashree, K.; Singh, M.K.; Agrawal, M.; Krishnan, S.G.; Hegde, G. Past decade of supercapacitor research-Lessons learned for future innovations. J. Energy Storage 2023, 70, 108062. [Google Scholar] [CrossRef]
- Wang, X.; Song, H.; Ma, S.; Li, M.; He, G.; Xie, M.; Guo, X. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability. Chem. Eng. J. 2022, 432, 134319. [Google Scholar] [CrossRef]
- Li, X.; Ren, J.; Sridhar, D.; Xu, B.B.; Algadi, H.; El-Bahy, Z.M.; Ma, Y.; Li, T.; Guo, Z. Progress of layered double hydroxide-based materials for supercapacitors. Mat. Chem. Front. 2023, 7, 1520–1561. [Google Scholar] [CrossRef]
- Jing, C.; Dong, B.; Zhang, Y. Chemical modifications of layered double hydroxides in the supercapacitor. Energy Environ. Mater. 2020, 3, 346–379. [Google Scholar] [CrossRef]
- Xie, J.; Khalid, Z.; Oh, J.M. Recent advances in the synthesis of layered double hydroxides nanosheets. Bull. Korean Chem. Soc. 2023, 44, 100–111. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Xu, W.; Yu, B.; Liu, Y.; Wu, Z. A doping element improving the properties of catalysis: In situ Raman spectroscopy insights into Mn-doped NiMn layered double hydroxide for the urea oxidation reaction. Catal. Sci. Technol. 2022, 12, 4471–4485. [Google Scholar] [CrossRef]
- Lim, S.Y.; Park, S.; Im, S.W.; Ha, H.; Seo, H.; Nam, K.T. Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 2020, 10, 235–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, C.-Q.; Kuai, C.-G.; Sokaras, D.; Zheng, X.-L.; Sainio, S.; Lin, F.; Dong, C.-K.; Nordlund, D.; Du, X.-W. Unveiling the critical role of the Mn dopant in a NiFe(OH)2 catalyst for water oxidation. J. Mater. Chem. A 2020, 8, 17471–17476. [Google Scholar] [CrossRef]
- Sharma, P.; Sundaram, M.M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn metal atom doping on the surface plane of one-dimesional NiMoO4 nanorods with improved redox chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huo, H.; Wang, L.; Lou, S.; Xiang, L.; Xie, B.; Wang, Q.; Du, C.; Wang, J.; Yin, G. Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes. Chem. Eng. J. 2021, 412, 128617. [Google Scholar] [CrossRef]
- Wan, S.; Qi, J.; Wei, Z.; Wang, W.; Zhang, S.; Liu, K.; Zheng, H.; Sun, J.; Wang, S.; Cao, R. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Sahu, T.K.; Qureshi, M. One-dimensional Co(OH)F as a noble metal-free redox mediator and hole extractor for boosted photoelectrochemical water oxidation in worm-like bismuth vanadate. ACS Sustain. Chem. Eng. 2021, 9, 5155–5165. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Wang, S.; Zhang, N.; Tong, Y.; Ju, H.; Chu, W.; Wu, C.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem. Int. Ed. 2018, 57, 15471–15475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, H.; Gu, X.; Feng, L. Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem. Eng. J. 2020, 397, 125500. [Google Scholar] [CrossRef]
- Kour, S.; Tanwar, S.; Sharma, A.L. A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Mater. Today Commun. 2022, 32, 104033. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, J.; Zhang, X.; Zeng, Z.; Insin, N.; Qin, J.; Huang, Y. Modification strategies of layered double hydroxides for superior supercapacitors. Adv. Energy Sustain. Res. 2022, 3, 2100183. [Google Scholar] [CrossRef]
- Gao, X.; Wang, P.; Pan, Z.; Claverie, J.P.; Wang, J. Recent progress in two-dimensional layered double hydroxides and their derivatives for supercapacitors. ChemSusChem 2020, 13, 1226–1254. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, B.; Ding, J.; Yang, Q.; Xu, D.; Zhou, P.; Ying, Y.; Li, L.; Liu, Y. Kinetics-favorable heterojunctional CNTs@CuCo-LDH/BPQD electrode with boosted charge storage capability for supercapacitor. Appl. Surf. Sci. 2023, 609, 155287. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, W.; Guo, Y.; Wang, Y. Self-supported Co-Ni-S@CoNi-LDH electrode with a nanosheet-assembled core-shell structure for a high-performance supercapacitor. J. Alloys Compd. 2022, 908, 164635. [Google Scholar] [CrossRef]
- Kuang, H.; Zhang, H.; Liu, X.; Chen, Y.; Zhang, W.; Chen, H.; Ling, Q. Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 2022, 190, 57–67. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, L.; Hao, S.; Fang, S.; Sui, Q.; Li, J.; Zou, Y.; Xu, F.; Sun, L.; Xiang, C.; et al. Core-shell Cu2O@CuS@NiCo layered double hydroxide composites as supercapacitor electrode materials. J. Energy Storage 2024, 77, 109983. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, X.; Sun, R.; Chen, X.; Han, S. Interface engineered hydrangea-like ZnCo2O4/NiCoGa-layered double hydroxide@polypyrrole core-shell heterostructure for high-performance hybrid supercapacitor. J. Colloid Interface Sci. 2023, 640, 662–679. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Zhou, J.; Jiang, X.; Wang, L.; Su, Y.; Zhu, B.; Chen, L. Hierarchical columnar cactus-like Co-MOF@NiCo-LDH core−shell nanowrinkled pillar arrays for supercapacitors with ultrahigh areal capacitance. ACS Appl. Energy Mater. 2023, 6, 4844–4853. [Google Scholar] [CrossRef]
- Li, S.; Luo, Y.; Wang, C.; Wu, M.; Xue, Y.; Yang, J.; Li, L. A novel hierarchical core-shell structure of NiCo2O4@NiCo-LDH nanoarrays for higher-performance flexible all-solid-state supercapacitor electrode materials. J. Alloys Compd. 2022, 920, 165986. [Google Scholar] [CrossRef]
- Sharma, P.; Sundaram, M.M.; Watcharatharapong, T.; Jungthawan, S.; Ahuja, R. Tuning the nanoparticle interfacial properties and stability of the core−shell structure in Zn-doped NiMoO4@AWO4. ACS Appl. Mater. Interfaces 2021, 13, 56116–56130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Y.; Yan, X.; Zhang, W.; Huang, X.; Pan, J.; Shahnavaz, Z. Construction of NiCo-LDH vertical standing arrays on carbon fibers for highly effective supercapacitors and catalytic oxygen evolution applications. J. Alloys Compd. 2023, 934, 167955. [Google Scholar] [CrossRef]
- Shang, X.; Mei, H.; Li, Z.; Dong, C.; Wang, Z.; Xu, B. Improved ionic diffusion and interfacial charge/mass transfer of ZIF-67-derived Ni-Co-LDH electrodes with bare ZIF-residual for enhanced supercapacitor performance. New J. Chem. 2021, 45, 13979–13985. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, H.-Y.; Wang, Z.-H. Synthesis, characterization and photocatalytic activity of Zn(OH)F hierarchical nanofibers prepared by a simple solution-based method. CrystEngComm 2012, 14, 2812–2816. [Google Scholar] [CrossRef]
- Hao, C.; Wang, X.; Wu, X.; Guo, Y.; Zhu, L.; Wang, X. Composite material CCO/Co-Ni-Mn LDH made from sacrifice template CCO/ZIF-67 for high-performance supercapacitor. Appl. Surf. Sci. 2022, 572, 151373. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Wang, C.; Li, Y.; Wei, M. Hollow polyhedral MnCoNi-LDH derived from metal-organic frameworks for high-performance supercapacitors. J. Electroanal. Chem. 2023, 928, 117051. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, H.; Zeng, J.; Li, G.; Chang, B.; Wu, C.; Guo, X.; Chen, G.; Zheng, L.; et al. Design and preparation of NiCoMn ternary layered double hydroxides with a hollow dodecahedral structure for high-performance asymmetric supercapacitors. ACS Appl. Energy Mater. 2022, 5, 6772–6782. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, L.; Zhang, Q.; Chen, D.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X.; Song, B.; et al. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 2018, 8, 1702247. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Q.; Jing, C.; Ling, F.; Tang, X.; Li, Y.; Wang, Y.; Jiang, S.; Yao, K.; Zhou, X. Mesoporous carbon-supported flower-like Mndoped Ni–Co layered double hydroxides with high cycling capacitance retention for supercapacitors. CrystEngComm 2023, 25, 3066–3078. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Qian, Y.; Jin, H.; Tang, X.; Huang, Z.; Lou, J.; Zhang, Q.; Lei, Y.; Wang, S. Hierarchical design of cross-linked NiCo2S4 nanowires bridged NiCo-hydrocarbonate polyhedrons for high-performance asymmetric supercapacitor. Adv. Funct. Mater. 2022, 33, 2210238. [Google Scholar] [CrossRef]
- Li, S.; Yang, K.; Ye, P.; Ma, K.; Zhang, Z.; Huang, Q. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl. Surf. Sci. 2020, 503, 144090. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Z. Three-dimensional Cu–Co–Se–P nanocomposites as flexible supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 2022, 33, 7396–7402. [Google Scholar] [CrossRef]
- Du, M.; Xia, W.; Jiao, Z.; Chen, Y.; Demir, M.; Zhang, Y.; Gu, M.; Zhang, X.; Wang, C. Construction of hierarchical sugar gourd-like (Ni,Co)Se2/(Ni,Co)Se2/CC nanostructure with enhanced performance for hybrid supercapacitor. J. Alloys Compd. 2023, 930, 167459. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, B.Y.; Zhang, H.; Jiang, X.; Yi, Q.; Xu, K.; Yu, H.; Hu, Z.; Jeerapan, I.; Ou, J.Z. CoNi layered double hydroxide nanosheets vertically grown on electrodeposited dendritic copper substrates for supercapacitor applications. ACS Appl. Nano Mater. 2022, 5, 2395–2404. [Google Scholar] [CrossRef]
- Yang, T.; Ye, J.; Chen, S.; Liao, S.; Chen, H.; Yang, L.; Xu, X.; Wang, F. Construction of nanowall-supported-nanorod NiCo LDH array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors. Electrochim. Acta 2020, 362, 137081. [Google Scholar] [CrossRef]
- Dong, K.; Yang, Z.; Shi, D.; Chen, M.; Dong, W. N-doped carbon coating for stabilizing metal sulfides on carbon materials for high cycle life asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 10928–10938. [Google Scholar] [CrossRef]
Sample Name | Ni(NO3)2·6H2O (g) | MnCl2·4H2O (g) | Ni/Mn (Molar Ratio) |
---|---|---|---|
Co(OH)F@Ni1CoMn0-LDH | 1 | 0 | 1:0 |
Co(OH)F@Ni4CoMn3-LDH | 0.66 | 0.33 | 4:3 |
Co(OH)F@Ni2CoMn3-LDH | 0.50 | 0.50 | 2:3 |
Co(OH)F@Ni1CoMn3-LDH | 0.33 | 0.66 | 1:3 |
Co(OH)F@Ni0CoMn1-LDH | 0 | 1 | 0:1 |
Ni/Mn | 1 Specific Capacitance (F cm−2) | Rs (Ω) | Rct (Ω) |
---|---|---|---|
1:0 | 18.00 | 1.077 | 0.214 |
4:3 | 23.01 | 0.827 | 0.082 |
2:3 | 20.82 | 1.180 | 0.127 |
1:3 | 19.06 | 0.942 | 0.102 |
0:1 | 8.135 | 0.819 | 0.276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lian, Y.; Zhu, X.; Wang, Q. MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance. Nanomaterials 2024, 14, 573. https://doi.org/10.3390/nano14070573
Wang Z, Lian Y, Zhu X, Wang Q. MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance. Nanomaterials. 2024; 14(7):573. https://doi.org/10.3390/nano14070573
Chicago/Turabian StyleWang, Zhou, Yijie Lian, Xinde Zhu, and Qi Wang. 2024. "MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance" Nanomaterials 14, no. 7: 573. https://doi.org/10.3390/nano14070573
APA StyleWang, Z., Lian, Y., Zhu, X., & Wang, Q. (2024). MOF-Mediated Construction of NiCoMn-LDH Nanoflakes Assembled Co(OH)F Nanorods for Improved Supercapacitive Performance. Nanomaterials, 14(7), 573. https://doi.org/10.3390/nano14070573