Bicontinuous Interfacially Jammed Emulsion Gels (Bijels): Preparation, Control Strategies, and Derived Porous Materials
Abstract
:1. Introduction
2. Preparation Methods of Bijels
2.1. TIPS
2.2. STRIPS
2.3. Direct Mixing
3. Control Strategies of Bijels
3.1. Surface Wettability of Particles
3.2. Particle Concentration
3.3. Particles Size
3.4. Charge Property of Particles
4. Bijel-Derived Porous Materials
4.1. Bicontinuous Porous Material
4.2. Electrode Porous Material
4.3. Bio-Based Porous Materials
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramsden, W. Separation of solids in the surface-layers of solutions and ‘suspensions’(observations on surfacemembranes, bubbles, emulsions, and mechanical coagulation)-Preliminary account. Proc. R. Soc. Lond. 1904, 72, 156–164. [Google Scholar]
- Pickering, S.U. Cxcvi.–Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Manga, M.S.; Hunter, T.N.; Cayre, O.J.; York, D.W.; Reichert, M.D.; Anna, S.L.; Walker, L.M.; Williams, R.A.; Biggs, S.R. Measurements of submicron particle adsorption and particle film elasticity at oil-water interfaces. Langmuir 2016, 32, 4125–4133. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.M.; Sadtler, V.; Marchal, P.; Lemaitre, C.; Niepceron, F.; Benyahia, L.; Roques-Carmes, T. Particles’ organization in direct oil-in-water and reverse water-in-oil Pickering emulsions. Nanomaterials 2023, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Pieranski, P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 1980, 45, 569–572. [Google Scholar] [CrossRef]
- Binks, B.P. Particles as surfactants–similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Binks, B.P.; Horozov, T.S. Colloidal Particles at liquid Interfaces; Cambrige University Press: Cambridge, UK, 2006. [Google Scholar]
- Tran, L.; Haase, M.F. Templating interfacial nanoparticle assemblies via in situ techniques. Langmuir 2019, 35, 8584–8602. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621–3638. [Google Scholar] [CrossRef]
- Parlett, C.M.A.; Wilson, K.; Lee, A.F. Hierarchical porous materials: Catalytic applications. Chem. Soc. Rev. 2013, 42, 3876–3893. [Google Scholar] [CrossRef]
- Trogadas, P.; Nigra, M.M.; Coppens, M.O. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New J. Chem. 2016, 40, 4016–4026. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Fan, W. Nitrogen-containing porous carbons: Synthesis and application. J. Mater. Chem. A 2013, 1, 999–1013. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, J.; Liu, G.; Cheng, B.; Zhou, P.; Li, X. Microemulsion-assisted synthesis of hierarchical porous Ni(OH)2/SiO2 composites toward efficient removal of formaldehyde in air. Dalton Trans. 2013, 42, 10190–10197. [Google Scholar] [CrossRef] [PubMed]
- Eynde, E.V.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S. Biotemplated diatom silica–titania materials for air purification. Photochem. Photobiol. Sci. 2013, 12, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Stratford, K.; Adhikari, R.; Pagonabarraga, I.; Desplat, J.C.; Cates, M.E. Colloidal jamming at interfaces: A route to fluid-bicontinuous gels. Science 2005, 309, 2198–2201. [Google Scholar] [CrossRef] [PubMed]
- Clegg, P.S.; Herzig, E.M.; Schofield, A.B.; Egelhaaf, S.U.; Poon, W.C.K. Emulsification of partially miscible liquids using colloidal particles: Nonspherical and extended domain structures. Langmuir 2007, 23, 5984–5994. [Google Scholar] [CrossRef] [PubMed]
- Herzig, E.M.; White, K.A.; Schofield, A.B.; Poon, W.C.K.; Clegg, P.S. Bicontinuous emulsions stabilized solely by colloidal particles. Nat. Mater. 2007, 6, 966–971. [Google Scholar] [CrossRef]
- White, K.A.; Schofield, A.B.; Binks, B.P.; Clegg, P.S. Influence of particle composition and thermal cycling on bijel formation. J. Phys. Condens. Matter 2008, 20, 5365–5373. [Google Scholar] [CrossRef]
- Vitantonio, G.D.; Wang, T.; Haase, M.F.; Stebe, K.J.; Lee, D. Robust bijels for reactive separation via silica-reinforced nanoparticle layers. ACS Nano 2019, 13, 26–31. [Google Scholar] [CrossRef]
- Cai, D.; Clegg, P.S.; Li, T.; Rumble, K.A.; Tavacoli, J.W. Bijels formed by direct mixing. Soft Matter 2017, 13, 4824–4829. [Google Scholar] [CrossRef]
- Reeves, M.; Brown, A.T.; Schofield, A.B.; Cates, M.E.; Thijssen, J.H.J. Particle-size effects in the formation of bicontinuous pickering emulsions. Phys. Rev. E 2015, 92, 032308. [Google Scholar] [CrossRef] [PubMed]
- Kendon, V.M.; Cates, M.E.; Pagonabarraga, I.; Desplat, J.C.; Bladon, P. Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study. J. Fluid Mech. 2001, 440, 147–203. [Google Scholar] [CrossRef]
- Huang, C.; Forth, J.; Wang, W.; Hong, K.; Smith, G.S.; Helms, B.A.; Russell, T.P. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. Nat. Nanotechnol. 2017, 12, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Tavacoli, J.W.; Thijssen, J.H.J.; Schojield, A.B.; Clegg, P.S. Novel, robust, and versatile bijels of nitromethane, ethanediol, and colloidal silica: Capsules, sub-ten-micrometer domains, and mechanical properties. Adv. Funct. Mater. 2011, 21, 2020–2027. [Google Scholar] [CrossRef]
- Bai, L.; Fruehwirth, J.W.; Cheng, X.; Macosko, C.W. Dynamics and rheology of nonpolar bijels. Soft Matter 2015, 11, 5282–5293. [Google Scholar] [CrossRef] [PubMed]
- Sanz, E.; White, K.A.; Clegg, P.S.; Cates, M.E. Colloidal gels assembled via a temporary interfacial scaffold. Phys. Rev. Lett. 2009, 103, 255502. [Google Scholar] [CrossRef]
- Cui, M.; Miesch, C.; Kosif, I.; Nie, H.; Kim, P.Y.; Kim, H.; Emrick, T.; Russel, T.P. Transition in dynamics as nanoparticles jam at the liquid/liquid interface. Nano Lett. 2017, 17, 6855–6862. [Google Scholar] [CrossRef]
- White, K.A.; Schofield, A.B.; Wormald, P.; Tavacoli, J.W.; Binks, B.P.; Clegg, P.S. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles. J. Colloid Interface Sci. 2011, 359, 126–135. [Google Scholar] [CrossRef]
- Boeker, A.; He, J.; Emrick, T.; Russell, T.P. Self-assembly of nanoparticles at interfaces. Soft Matter 2007, 3, 1231–1248. [Google Scholar] [CrossRef]
- Russell, J.T.; Lin, Y.; Boeker, A.; Su, L.; Carl, P.; Zett, H.; He, J.; Sill, K.; Tangirala, R.; Emrick, T.; et al. Self-assembly and cross-linking of bionanoparticles at liquid–liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426. [Google Scholar] [CrossRef]
- Haase, M.F.; Stebe, K.J.; Lee, D. Continuous fabrication of hierarchical and asymmetric Bijel microparticles, fibers, and membranes by solvent transfer-induced phase separation (STRIPS). Adv. Mater. 2015, 27, 7065–7071. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Cheminform 2011, 43, 621–630. [Google Scholar]
- Cates, M.E.; Clegg, P.S. Bijels: A new class of soft materials. Soft Matter 2008, 4, 2132–2138. [Google Scholar] [CrossRef]
- McDevitt, K.M.; Thorson, T.J.; Botvinick, E.L.; Mumm, D.R. Microstructural characteristics of bijel-templated porous materials. Materialia 2019, 7, 100393. [Google Scholar] [CrossRef]
- Li, J.; Wang, M. Fabrication and evaluation of multiwalled carbon nanotube-containing bijels and bijels-derived porous nanocomposites. Langmuir 2023, 39, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.N.; Mohraz, A. Bicontinuous macroporous materials from bijel templates. Adv. Mater. 2010, 22, 4836–4841. [Google Scholar] [CrossRef] [PubMed]
- Levesque, S.G.; Lim, R.M.; Shoichet, M.S. Macroporous interconnected dextran scaffolds of controlled porosity for tissueengineering applications. Biomaterials 2005, 26, 7436–7446. [Google Scholar] [CrossRef]
- Vanoli, V.; Massobrio, G.; Pizzetti, F.; Mele, A.; Rossi, F.; Castiglione, F. Bijels as a fluid labyrinth for drugs: The effect of nanoparticles on the release kinetics of ethosuximide and dimethyl fumarate. ACS Omega 2022, 7, 42845–42853. [Google Scholar] [CrossRef]
- Witt, J.A.; Mumm, D.R.; Mohraz, A. Microstructural tunability of co-continuous bijel-derived electrodes to provide high energy and power densities. J. Mater. Chem. A 2016, 4, 1000–1007. [Google Scholar] [CrossRef]
- Debenedetti, P.G. Metastable Liquids: Concepts and Principles; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Clegg, P.S.; Thijssen, J.H.J. Chapter 1: Introduction to Bijels; Royal Society of Chemistry Press: Cambridge, UK, 2020; pp. 1–33. [Google Scholar]
- Chew, C.H.; Li, T.D.; Gan, L.H.; Quek, C.H.; Gan, L.M. Bicontinuous-nanostructured polymeric materials from microemulsion polymerization. Langmuir 1998, 14, 6068–6076. [Google Scholar] [CrossRef]
- Vitantonio, G.; Lee, D.; Stebe, K.J. Fabrication of solvent transfer-induced phase separation bijels with mixtures of hydrophilic and hydrophobic nanoparticles. Soft Matter 2020, 16, 5848–5853. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; McPherson, R.H. The behavior of colloidal suspensions with immiscible solvents. J. Phys. Chem. C 1908, 12, 706–716. [Google Scholar] [CrossRef]
- Reeves, M.; Stratford, K.; Thijssen, J.H.J. Quantitative morphological characterization of bicontinuous Pickering emulsions via interfacial curvatures. Soft Matter 2016, 12, 4082. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.F.; Jeon, H.; Hough, N.; Kim, J.H.; Stebe, K.J.; Lee, D. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat. Commun. 2017, 8, 1234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wei, L.; Chen, H.; Du, Z.; Binks, B.P.; Yang, H. Compartmentalized droplets for continuous flow liquid-liquid interface catalysis. J. Am. Chem. Soc. 2016, 138, 10173–10183. [Google Scholar] [CrossRef] [PubMed]
- Valmacco, V.; Elzbieciak-Wodka, M.; Besnard, C.; Maroni, P.; Trefalt, G.; Borkovec, M. Dispersion forces acting between silica particles across water: Influence of nanoscale roughness. Nanoscale Horiz. 2016, 1, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, J.; Liu, K.; Cui, Z.; Binks, B.P. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant. Langmuir 2015, 31, 3301–3307. [Google Scholar] [CrossRef]
- Hahm, E.; Jo, A.; Kang, E.; Yoo, K.; Shin, M.; An, J.; Pham, X.; Kim, H.; Kang, H.; Kim, J.; et al. Silica Encapsulation of hydrophobic optical NP-embedded silica particles with trimethoxy(2-Phenylethyl)silane. Nanomaterials 2023, 13, 2145. [Google Scholar] [CrossRef]
- Boakye-Ansah, S.; Schwenger, M.S.; Haase, M. Designing bijels formed by solvent transfer induced phase separation with functional nanoparticles. Soft Matter 2019, 15, 3379–3388. [Google Scholar] [CrossRef]
- Vitantonio, G.D.; Wang, T.; Stebe, K.J.; Lee, D. Fabrication and application of bicontinuous interfacially jammed emulsions gels. Appl. Phys. Rev. 2021, 8, 021323. [Google Scholar] [CrossRef]
- Rumble, K.A.; Thijssen, J.H.J.; Schofield, A.B.; Clegg, P.S. Compressing a spinodal surface at fixed area: Bijels in a centrifuge. Soft Matter 2016, 12, 4375–4383. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, H.; Wang, M. Phase inversion-based technique for fabricating Bijels and Bijels-derived structures with tunable microstructures. Langmuir 2020, 36, 14644–14655. [Google Scholar] [CrossRef] [PubMed]
- Oettel, M.; Dietrich, S. Colloidal interactions at fluid interfaces. Langmuir 2008, 24, 1425–1441. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Succi, S.; Lauricella, M.; Montessori, A.; Luo, K.H. Shear dynamics of confined bijels. AIP Adv. 2020, 10, 095304. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Guo, T.; Sun, G.; Luo, J.; Liu, R.; Steve Tse, Y.L.; Ngai, T. Investigation of the contact angle and packing density of silica nanoparticles at a pickering emulsion interface fixed by uv polymerization. Langmuir 2022, 38, 4234–4242. [Google Scholar] [CrossRef] [PubMed]
- Arnaudov, L.N.; Cayre, O.J.; Stuart, M.A.C.; Stoyanov, S.D.; Paunov, V.N. Measuring the three-phase contact angle of nanoparticles at fluid interfaces. Phys. Chem. Chem. Phys. 2010, 12, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Weston, J.S.; Jentoft, R.E.; Grady, B.P.; Resasco, D.E.; Harwell, J.H. Silica nanoparticle wettability: Characterization and effects on the emulsion properties. Ind. Eng. Chem. Res. 2015, 54, 39110–39117. [Google Scholar] [CrossRef]
- Giakoumatos, E.C.; Aloi, A.; Voets, I.K. Illuminating the impact of submicron particle size and surface chemistry on interfacial position and pickering emulsion type. Nano Lett. 2020, 20, 4837–4841. [Google Scholar] [CrossRef]
- Lee, M.N.; Thijssen, J.H.J.; Witt, J.A.; Clegg, P.S.; Mohraz, A. Making a robust interfacial scaffold: Bijel rheology and its link to processability. Adv. Funct. Mater. 2012, 23, 417–423. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. zhuravlev model. Colloids Surf. A 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Cui, M.; Emrick, T.; Russell, T.P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 2013, 342, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Lim, H.G.; Haase, M.F.; Stebe, K.J.; Jung, G.Y.; Lee, D. Bicontinuous interfacially jammed emulsion gels (bijels) as media for enabling enzymatic reactive separation of a highly water insoluble substrate. Sci. Rep. 2019, 9, 6363. [Google Scholar] [CrossRef]
- Cai, D.; Clegg, P.S. Stabilizing bijels using a mixture of fumed silica nanoparticles. Chem. Commun. 2015, 51, 16984–16987. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Wu, J.; Sun, G.; Nan, F.; Ngai, T.; Ma, G. Systematic studies of pickering emulsions stabilized by uniform-sized plga particles: Preparation and stabilization mechanism. J. Mater. Chem. B 2014, 2, 7605–7611. [Google Scholar] [CrossRef] [PubMed]
- Nan, F.; Wu, J.; Qi, F.; Liu, Y.; Ngai, T.; Ma, G. Uniform chitosan-coated alginate particles as emulsifiers for preparation of stable pickering emulsions with stimulus dependence. Colloids Surf. A 2014, 456, 246–252. [Google Scholar] [CrossRef]
- Wu, J.; Ma, G.H. Recent studies of Pickering emulsions: Particles make the difference. Small 2016, 12, 4633–4648. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.; Harting, J. From bijels to pickering emulsions: A lattice boltzmann study. Phys. Rev. E 2011, 83, 046707. [Google Scholar] [CrossRef] [PubMed]
- Boakye-Ansah, S.; Khan, M.A.; Haase, M.F. Controlling surfactant adsorption on highly charged nanoparticles to stabilize Bijels. J. Phys. Chem. C 2020, 124, 12417–12423. [Google Scholar] [CrossRef]
- Huang, C.; Helms, B.; Smith, G.; Russell, T. Structured liquids with pH-triggered reconfigurability. Adv. Mater. 2016, 28, 6612–6618. [Google Scholar] [CrossRef]
- Huang, C.; Cui, M.; Sun, Z.; Liu, F.; Russell, T.P. Self-regulated nanoparticle assembly at liquid/liquid interfaces: A Route to adaptive structuring of liquids. Langmuir 2017, 33, 7994–8001. [Google Scholar] [CrossRef]
- Thorson, T.J.; Botvinick, E.L.; Mohraz, A. Composite bijel-templated hydrogels for cell delivery. ACS Biomater. Sci. Eng. 2018, 4, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Siegel, H.; Ruiter, M.; Athanasiou, G.; Hesseling, C.M.; Haase, M.F. Roll-to-Roll fabrication of Bijels via Solvent Transfer Induced Phase Separation (R2R-STrIPS). Adv. Mater. Technol. 2024, 3, 2301525. [Google Scholar] [CrossRef]
- Cai, D.; Richter, F.H.; Thijssen, J.H.J.; Bruce, P.G.; Clegg, P.S. Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt. Mater. Horiz. 2018, 5, 499–505. [Google Scholar] [CrossRef]
- Mcdevitt, K.M.; Mumm, D.R.; Mohraz, A. Improving cyclability of ZnO electrodes through microstructural design. ACS Appl. Energy Mater. 2019, 2, 8107–8117. [Google Scholar] [CrossRef]
- Onuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, G.; Gopalan, A.; D’Agati, M.; Srinivas Sankaran, J.; Judex, S.; Qin, Y.X.; Sitharaman, B. Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J. Biomed. Mater. Res. Part A 2015, 103, 3212–3225. [Google Scholar] [CrossRef] [PubMed]
- Udenni Gunathilake, T.M.S.; Ching, Y.C.; Ching, K.Y.; Chuah, C.H.; Abdullah, L.C. Biomedical and microbiological applications of bio-based porous materials: A review. Polymers 2017, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Firoozmand, H.; Murray, B.S.; Dickinson, E. Interfacial structuring in a phase-separating mixed biopolymer solution containing colloidal particles. Langmuir 2009, 25, 1300–1305. [Google Scholar] [CrossRef]
- Firoozmand, H.; Murray, B.S.; Dickinson, E. Microstructure and elastic modulus of mixed gels of gelatin + oxidized starch: Effect of pH. Food Hydrocoll. 2012, 26, 286–292. [Google Scholar] [CrossRef]
- Murray, B.S.; Phisarnchananan, N. The effect of nanoparticles on the phase separation of waxy corn starch + locust bean gum or guar gum. Food Hydrocoll. 2014, 42, 92–99. [Google Scholar] [CrossRef]
- Ching, H.; Thorson, T.J.; Paul, B.; Mohraz, A. Rapid production of bicontinuous macroporous materials using intrinsically polymerizable bijels. Mater. Adv. 2021, 2, 5067–5075. [Google Scholar] [CrossRef]
- McDevitt, K.M.; Mumm, D.R.; Mohraz, A. Mitigating bubble traffic in gas-evolving electrodes via spinodally derived architectures. ACS Appl. Mater. Interfaces 2021, 13, 8528–8537. [Google Scholar]
- Thorson, T.J.; Gurlin, R.E.; Botvinick, E.L.; Mohraz, A. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization. Acta Biomater. 2019, 94, 173–182. [Google Scholar] [CrossRef]
- Firoozmand, H.; Rousseau, D. Food-grade bijels based on gelatin-maltodextrin-microbial cell composites. Food Hydrocoll. 2015, 48, 208–212. [Google Scholar] [CrossRef]
Application | Material Morphology | Preparation Methods | Nanoparticle Type | Particle Surface Treatment Method | Particle Size | System | Domain Size | Reference |
---|---|---|---|---|---|---|---|---|
Bicontinuous porous material | Bicontinuous porous | TIPS | Silica | Drying and Silanization | ≈750 nm | 2,6-lutidine-water | 20–100 µm | [37] |
Microparticles, fibers, and membranes | STRIPS | Silica | CTAB modification | 22 nm | diethylphthalate-ethanol-water | 500 nm–10 µm | [32] | |
Porous scaffold | TIPS | Silica | Drying | 410 nm | 2,6-lutidine-water | / | [62] | |
Bicontinuous macroporous | TIPS | Silica | Silanization | / | 1,4-butanediol- poly(ethylene glycol) diacrylate | / | [84] | |
Bicontinuous porous | TIPS | Silica | Drying | 440 nm | 2,6-lutidine-water | 6–50 µm | [35] | |
Bicontinuous porous | STRIPS | Silica | CTAB modification | 22 nm | Hexanediol diacrylate-ethanol-water | <100 µm | [36] | |
Porous membranes | STRIPS | Silica | CTAB modification | / | Hexanediol diacrylate-ethanol-water | 100–600 nm | [47] | |
Electrode porous material | Bicontinuous porous | TIPS | Silica | Drying and fluorescently modified | 697 nm | 2,6-lutidine-water | 8–22 µm | [40] |
Bicontinuous porous | TIPS | Silica | Drying and fluorescently modified | / | 2,6-lutidine-water | 8–15 µm | [77] | |
Bicontinuous porous | TIPS | Silica | Drying | / | 2,6-lutidine-water | 30–85 µm | [85] | |
Bio-based porous materials | Porous hydrogel | TIPS | Silica | Fluorescently modified | 500 nm | 2,6-lutidine-water | / | [74] |
Bijels -like hydrogel | Direct mixing | Hydroxyapatite | Arabic gum graft | / | ε-caprolactone-ethanol | / | [39] | |
Bicontinuous porous | TIPS | Silica | Fluorescently modified | 500 nm | 2,6-lutidine-water | / | [86] | |
Bijels -like hydrogel | Direct mixing | Gelatin- maltodextrin | Fluorescently modified | / | Gelatin and maltodextrin solutions | / | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Cao, M. Bicontinuous Interfacially Jammed Emulsion Gels (Bijels): Preparation, Control Strategies, and Derived Porous Materials. Nanomaterials 2024, 14, 574. https://doi.org/10.3390/nano14070574
Shen X, Cao M. Bicontinuous Interfacially Jammed Emulsion Gels (Bijels): Preparation, Control Strategies, and Derived Porous Materials. Nanomaterials. 2024; 14(7):574. https://doi.org/10.3390/nano14070574
Chicago/Turabian StyleShen, Xingliang, and Meiwen Cao. 2024. "Bicontinuous Interfacially Jammed Emulsion Gels (Bijels): Preparation, Control Strategies, and Derived Porous Materials" Nanomaterials 14, no. 7: 574. https://doi.org/10.3390/nano14070574
APA StyleShen, X., & Cao, M. (2024). Bicontinuous Interfacially Jammed Emulsion Gels (Bijels): Preparation, Control Strategies, and Derived Porous Materials. Nanomaterials, 14(7), 574. https://doi.org/10.3390/nano14070574