Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process
Abstract
:1. Introduction
2. Methods
2.1. Fabrication of Quenched VO2(M) Nanoparticles
2.2. Fabrication of VO2-PVP Nanocomposite Film
2.3. Characterization
3. Results and Discussion
3.1. Structure of the VO2 Nanoparticles
3.2. Thermochromic Properties and Morphology of VO2 Nanocomposite Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, F.J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Vu, T.D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhou, Y.; Cui, Y.; Chen, Z.; Liu, Y.; Li, J.; Long, Y.; Gao, Y. Thermochromic energy efficient windows: Fundamentals, recent advances, and perspectives. Chem. Rev. 2023, 123, 7025–7080. [Google Scholar] [CrossRef]
- Bhupathi, S.; Wang, S.; Ke, Y.; Long, Y. Recent progress in vanadium dioxide: The multi-stimuli responsive material and its applications. Mater. Sci. Eng. R Rep. 2023, 155, 100747. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy 2012, 1, 221–246. [Google Scholar] [CrossRef]
- Xu, F.; Cao, X.; Luo, H.; Jin, P. Recent advances in VO2-based thermochromic composites for smart windows. J. Mater. Chem. C 2018, 6, 1903–1919. [Google Scholar] [CrossRef]
- Song, J.; Zhao, Y.; Sun, L.; Luo, Q.; Xu, H.; Wang, C.; Xin, H.; Wu, W.; Ma, F. VO2/ATO nanocomposite thin films with enhanced solar modulation and high luminous transmittance for smart windows. Ceram. Int. 2022, 48, 15868–15876. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Zhang, Y. Sol-gel derived tungsten doped VO2 thin films on Si substrate with tunable phase transition properties. Molecules 2023, 28, 3778. [Google Scholar] [CrossRef]
- Abdellaoui, I.; Merad, G.; Maaza, M.; Abdelkader, H.S. Electronic and optical properties of Mg-, F-doped and Mg∖F-codoped M1-VO2 via hybrid density functional calculations. J. Alloys Compd. 2016, 658, 569–575. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Gagaoudakis, E.; Boukos, N.; Aperathitis, E.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y.S. Thermochromic performance of Mg-doped VO2 thin films on functional substrates for glazing applications. Sol. Energy Mater. Sol. Cells 2016, 157, 1004–1010. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, D.; Hao, C.; Mi, W.; Zhou, L. The optimization and role of Ti surface doping in thermochromic VO2 film. Opt. Mater. 2022, 133, 112960. [Google Scholar] [CrossRef]
- Qin, S.; Fan, Y.; Qiu, X.; Gou, G.; Zhang, K.; Feng, Q.; Gan, G.; Sun, W. Modulation of the phase transition behavior of VO2 nanofilms by the coupling of Zr doping and thickness-dependent band gap. ACS Appl. Mater. Interfaces 2022, 4, 6067–6075. [Google Scholar] [CrossRef]
- Wu, S.; Tian, S.; Liu, B.; Tao, H.; Zhao, X.; Palgrave, R.G.; Sankar, G.; Parkin, I.P. Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties. Sol. Energy Mater. Sol. Cells 2018, 176, 427–434. [Google Scholar] [CrossRef]
- Long, S.; Cao, X.; Wang, Y.; Chang, T.; Li, N.; Jin, L.; Ma, L.; Xu, F.; Sun, G.; Jin, P. Karst landform-like VO2 single layer solution: Controllable morphology and excellent optical performance for smart glazing applications. Sol. Energy Mater. Sol. Cells 2020, 209, 110449. [Google Scholar] [CrossRef]
- Ke, Y.; Wen, X.; Zhao, D.; Che, R.; Xiong, Q.; Long, Y. Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance. ACS Nano 2017, 11, 7542–7551. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wang, N.; Li, Y.; Zhang, J.; Xu, Z.; Long, Y. Bioinspired multifunctional vanadium dioxide: Improved thermochromism and hydrophobicity. Langmuir 2014, 30, 10766–10771. [Google Scholar] [CrossRef]
- Yao, L.; Qu, Z.; Sun, R.; Pang, Z.; Wang, Y.; Jin, B.; He, J. Long-lived multilayer coatings for smart windows: Integration of energy-saving, antifogging, and self-healing functions. ACS Appl. Energy Mater. 2019, 2, 7467–7473. [Google Scholar] [CrossRef]
- Mlyuka, N.R.; Niklasson, G.A.; Granqvist, C.G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance. Sol. Energy Mater. Sol. Cells 2009, 93, 1685–1687. [Google Scholar] [CrossRef]
- Long, S.; Zhou, H.; Bao, S.; Xin, Y.; Cao, X.; Jin, P. Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability. RSC Adv. 2016, 6, 106435–106442. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Gagaoudakis, E.; Aperathitis, E.; Michail, I.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y.S. The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO2 thin films. Thin Solid Films 2015, 594, 310–315. [Google Scholar] [CrossRef]
- Yao, L.; Qu, Z.; Pang, Z.; Li, J.; Tang, S.; He, J.; Feng, L. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows. Small 2018, 14, e1801661. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Kang, J.; Liu, J.; Shi, F.; Dong, Y.; Song, X.; Wang, Z.; Tian, Z.; Xu, J.; Ma, J.; Zhao, X. Facile fabrication of VO2/SiO2 aerogel nanocomposite films with excellent thermochromic properties for smart windows. Appl. Surf. Sci. 2022, 573, 151507. [Google Scholar] [CrossRef]
- Li, D.; Deng, S.; Zhao, Z.; Yang, J.; Wang, B.; Li, J.; Jin, H. VO2(M)@SnO2 core–shell nanoparticles: Improved chemical stability and thermochromic property rendered by SnO2 shell. Appl. Surf. Sci. 2022, 598, 153741. [Google Scholar] [CrossRef]
- Samal, A.; Lakshya, A.K.; Dhar Dwivedi, S.M.M.; Dalal, A.; Ghosh, A.; Paul, A.D.; Mahapatra, R.; Gupta, R.K.; Hasan, M.A.; Dey, A.; et al. Stable and reversible phase change performance of TiO2 coated VO2 nano-columns: Experiments and theoretical analysis. Ceram. Int. 2021, 47, 14741–14749. [Google Scholar] [CrossRef]
- Liu, C.; Cao, X.; Kamyshny, A.; Law, J.Y.; Magdassi, S.; Long, Y. VO2/Si-Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. J. Colloid Interface Sci. 2014, 427, 49–53. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Tian, S.; Liu, B.; Yang, X.; Yu, Z.; Zhao, X. VO2-ZnO nanocomposite films with enhanced thermochromic properties for smart windows. Ceram. Int. 2020, 46, 2758–2763. [Google Scholar] [CrossRef]
- Kang, J.; Liu, J.; Shi, F.; Dong, Y.; Jiang, S. The thermochromic characteristics of Zn-doped VO2 that were prepared by the hydrothermal and post-annealing process and their polyurethane nanocomposite films. Ceram. Int. 2021, 47, 15631–15638. [Google Scholar] [CrossRef]
- Cool, N.I.; Larriuz, C.A.; James, R.; Ayala, J.R.; Anita; Al-Hashimi, M.; Banerjee, S. Thermochromic fenestration elements based on the dispersion of functionalized VO2 nanocrystals within a polyvinyl butyral laminate. ACS Eng. Au 2022, 2, 477–485. [Google Scholar] [CrossRef]
- Mao, Z.; Huang, W.; Zhou, W.; Tang, L.; Shi, Q. In-situ stirring assisted hydrothermal synthesis of W-doped VO2(M) nanorods with improved doping efficiency and mid-infrared switching property. J. Alloys Compd. 2020, 821, 153556. [Google Scholar] [CrossRef]
- Cao, C.; Yanfeng, G.; Hongjie, L. Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property. J. Phys. Chem. C 2008, 112, 18810–18814. [Google Scholar] [CrossRef]
- Yang, X.; Zou, J. Facile fabrication of VO2 composite film with enhanced significantly solar modulation performance by adjusting viscosity of VO2/PU dispersion. J. Alloys Compd. 2023, 940, 168868. [Google Scholar] [CrossRef]
- Li, B.; Tian, S.; Qian, J.; Wu, S.; Liu, B.; Zhao, X. In situ synthesis of highly dispersed VO2(M) nanoparticles on glass surface for energy efficient smart windows. Ceram. Int. 2023, 49, 2310–2318. [Google Scholar] [CrossRef]
- Yuan, L.; Hu, Z.; Hou, C.; Meng, X. In-Situ thermochromic mechanism of Spin-Coated VO2 film. Appl. Surf. Sci. 2021, 564, 150441. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, K.; Nie, S.; Zhao, X.; Yu, H.; Yu, J.; Fujishima, A.; Nakata, K. Ice–water quenching induced Ti3+ self-doped TiO2 with surface lattice distortion and the increased photocatalytic activity. J. Phys. Chem. C 2017, 121, 19836–19848. [Google Scholar] [CrossRef]
- Li, B.; Tian, S.; Tao, H.; Zhao, X. Tungsten doped M-phase VO2 mesoporous nanocrystals with enhanced comprehensive thermochromic properties for smart windows. Ceram. Int. 2019, 45, 4342–4350. [Google Scholar] [CrossRef]
- Mohamed Azharudeen, A.; Karthiga, R.; Rajarajan, M.; Suganthi, A. Enhancement of electrochemical sensor for the determination of glucose based on mesoporous VO2/PVA nanocomposites. Surf. Interfaces 2019, 16, 164–173. [Google Scholar] [CrossRef]
Sample | Tsol (%) | Tlum (%) | ΔTsol (%) | ΔTNIR (%) | ||
---|---|---|---|---|---|---|
20 °C | 90 °C | 20 °C | 90 °C | |||
P-VO2 film | 52.5 | 43.7 | 53.2 | 47.3 | 8.8 | 12.8 |
H-VO2 film | 47.9 | 35.4 | 51.6 | 43.5 | 12.5 | 19.8 |
E-VO2 film | 58.2 | 43.0 | 62.5 | 50.9 | 15.2 | 21.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Zhou, L.; Li, B.; Tian, S.; Zhao, X. Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process. Nanomaterials 2023, 13, 2252. https://doi.org/10.3390/nano13152252
Wu S, Zhou L, Li B, Tian S, Zhao X. Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process. Nanomaterials. 2023; 13(15):2252. https://doi.org/10.3390/nano13152252
Chicago/Turabian StyleWu, Senwei, Longxiao Zhou, Bin Li, Shouqin Tian, and Xiujian Zhao. 2023. "Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process" Nanomaterials 13, no. 15: 2252. https://doi.org/10.3390/nano13152252
APA StyleWu, S., Zhou, L., Li, B., Tian, S., & Zhao, X. (2023). Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process. Nanomaterials, 13(15), 2252. https://doi.org/10.3390/nano13152252