Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles
Abstract
:1. Introduction
2. Theoretical Model
Numerical Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem; Royal Society of Chemistry: London, UK, 2008. [Google Scholar]
- Greenfield, J.L.; Wade, J.; Brandt, J.R.; Shi, X.; Penfold, T.J.; Fuchter, M.J. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 2021, 12, 8589–8602. [Google Scholar] [CrossRef]
- Cameron, R.P.; Barnett, S.M.; Yao, A.M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 2012, 14, 053050. [Google Scholar] [CrossRef]
- Lifson, A.; Reuschle, C.; Sjodahl, M. The chirality-flow formalism. Eur. Phys. J. C 2020, 80, 1–27. [Google Scholar] [CrossRef]
- Mun, J.; Kim, M.; Yang, Y.; Badloe, T.; Ni, J.; Chen, Y.; Qiu, C.W.; Rho, J. Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl. 2020, 9, 139. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 2019, 1, 033080. [Google Scholar] [CrossRef] [Green Version]
- Moreno, E.; Colombier, J.P. Axicon lenses with chiral-focusing properties modeling by means of analytical functions. Opt. Lasers Eng. 2023, 163, 107437. [Google Scholar] [CrossRef]
- Greenberg, A.P.; Prabhakar, G.; Ramachandran, S. High resolution spectral metrology leveraging topologically enhanced optical activity in fibers. Nat. Commun. 2020, 11, 5257. [Google Scholar] [CrossRef]
- Davis, T.; Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 2013, 87, 085405. [Google Scholar] [CrossRef]
- Vázquez-Guardado, A.; Chanda, D. Superchiral light generation on degenerate achiral surfaces. Phys. Rev. Lett. 2018, 120, 137601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, M.L.; Hu, J.; Lawrence, M.; García-Etxarri, A.; Dionne, J.A. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 2018, 6, 43–49. [Google Scholar] [CrossRef]
- Kramer, C.; Schaferling, M.; Weiss, T.; Giessen, H.; Brixner, T. Analytic optimization of near-field optical chirality enhancement. ACS Photonics 2017, 4, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Van Kruining, K.; Cameron, R.; Götte, J. Superpositions of up to six plane waves without electric-field interference. Optica 2018, 5, 1091–1098. [Google Scholar] [CrossRef]
- Narushima, T.; Hashiyada, S.; Okamoto, H. Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photonics 2014, 1, 732–738. [Google Scholar] [CrossRef]
- Ayuso, D.; Neufeld, O.; Ordonez, A.F.; Decleva, P.; Lerner, G.; Cohen, O.; Ivanov, M.; Smirnova, O. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 2019, 13, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Cohen, A.E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cohen, A.E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Askarpour, A.N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 2017, 8, 14180. [Google Scholar] [CrossRef]
- Woźniak, P.; De Leon, I.; Höflich, K.; Leuchs, G.; Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 2019, 6, 961–965. [Google Scholar] [CrossRef] [Green Version]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Gan, Q.; Zhan, Q. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Phys. Rev. Lett. 2019, 122, 223901. [Google Scholar] [CrossRef]
- Horrer, A.; Zhang, Y.; Gérard, D.; Béal, J.; Kociak, M.; Plain, J.; Bachelot, R. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 2019, 20, 509–516. [Google Scholar] [CrossRef]
- Reddy, I.V.; Baev, A.; Furlani, E.P.; Prasad, P.N.; Haus, J.W. Interaction of structured light with a chiral plasmonic metasurface: Giant enhancement of chiro-optic response. Acs Photonics 2018, 5, 734–740. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Hao, X.; Qin, W. Helical-chiroptical nanowires generated orbital angular momentum for the detection of circularly polarized light. Appl. Phys. Lett. 2020, 116, 053301. [Google Scholar] [CrossRef]
- Sirenko, A.A.; Marsik, P.; Bugnon, L.; Soulier, M.; Bernhard, C.; Stanislavchuk, T.; Xu, X.; Cheong, S.W. Total angular momentum dichroism of the terahertz vortex beams at the antiferromagnetic resonances. Phys. Rev. Lett. 2021, 126, 157401. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wu, D.; Lao, Z.; Wang, Z.; Huang, K.; Ji, S.; Li, J.; Huang, Z.; Xiong, Q.; et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2020055118. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, Y.; Qiao, Z.; Eng Aik, C.; Tu, W.C.; Wu, X.; Chen, Y.C. Stimulated chiral light–matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975. [Google Scholar] [CrossRef]
- Genet, C. Chiral light–chiral matter interactions: An optical force perspective. ACS Photonics 2022, 9, 319–332. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.H. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 2015, 114, 203003. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yan, S.; Zhang, Y.; Chen, X.; Yao, B. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. Nanoscale Adv. 2021, 3, 6897–6902. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Lozano, J.E.; Martínez, A. Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser Photonics Rev. 2020, 14, 1900422. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Zhang, Q.; Liu, X.; Zhang, Y. Behavior of SPPs in chiral–graphene–chiral structure. Opt. Lett. 2021, 46, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Miliutina, E.; Zadny, J.; Guselnikova, O.; Storch, J.; Walaska, H.; Kushnarenko, A.; Burtsev, V.; Svorcik, V.; Lyutakov, O. Chiroplasmon-active optical fiber probe for environment chirality estimation. Sens. Actuators B Chem. 2021, 343, 130122. [Google Scholar] [CrossRef]
- Begzjav, T.K.; Zhang, Z.; Scully, M.O.; Agarwal, G.S. Enhanced signals from chiral molecules via molecular coherence. Opt. Express 2019, 27, 13965–13977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neubrech, F.; Hentschel, M.; Liu, N. Reconfigurable plasmonic chirality: Fundamentals and applications. Adv. Mater. 2020, 32, 1905640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, X.; Rui, G.; Zou, S.; Gu, B.; Zhan, Q.; Cui, Y. Synthesis of multiple longitudinal polarization vortex structures and its application in sorting chiral nanoparticles. Opt. Express 2021, 29, 19001–19014. [Google Scholar] [CrossRef]
- Stella, U.; Grosjean, T.; De Leo, N.; Boarino, L.; Munzert, P.; Lakowicz, J.R.; Descrovi, E. Vortex beam generation by spin-orbit interaction with Bloch surface waves. ACS Photonics 2020, 7, 774–783. [Google Scholar] [CrossRef]
- Maucher, F.; Skupin, S.; Gardiner, S.; Hughes, I. Creating complex optical longitudinal polarization structures. Phys. Rev. Lett. 2018, 120, 163903. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Freimuth, F.; Gomonay, O.; Blügel, S.; Mokrousov, Y. Driving spin chirality by electron dynamics in laser-excited antiferromagnets. Commun. Phys. 2022, 5, 69. [Google Scholar] [CrossRef]
- Jia, S.; Peng, J.; Cheng, Y.; Wang, S. Chiral discrimination by polarization singularities of a metal sphere. Phys. Rev. A 2022, 105, 033513. [Google Scholar] [CrossRef]
- Caridad, J.M.; Tserkezis, C.; Santos, J.E.; Plochocka, P.; Venkatesan, M.; Coey, J.; Mortensen, N.A.; Rikken, G.L.; Krstić, V. Detection of the Faraday chiral anisotropy. Phys. Rev. Lett. 2021, 126, 177401. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, H.J.; Cheon, S.; Kim, T.H. Circular dichroism of emergent chiral stacking orders in quasi-one-dimensional charge density waves. Phys. Rev. Lett. 2022, 128, 046401. [Google Scholar] [CrossRef]
- Huft, P.R.; Kolbow, J.D.; Thweatt, J.T.; Lindquist, N.C. Holographic plasmonic nanotweezers for dynamic trapping and manipulation. Nano Lett. 2017, 12, 7920–7925. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Maccaferri, N.; Shen, Y.; Li, X.; Zaccaria, R.; Zhang, X.; Gorodetski, Y.; Garoli, D. Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex. Opt. Lett. 2020, 45, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Kotsifaki, D.; Chormaic, S. Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects. Nanophotonics 2019, 8, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. 1959, 253, 358–379. [Google Scholar]
- Novotny, L.; Hecht, B. Principles of Nano Optics; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Li, M.; Yan, S.; Zhang, Y.; Yao, B. Generation of controllable chiral optical fields by vector beams. Nanoscale 2020, 12, 15453–15459. [Google Scholar] [CrossRef]
- Albaladejo, S.; Marqués, M.I.; Laroche, M.; Sáenz, J.J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 2009, 102, 113602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Yan, S.; Zhang, Y.; Liang, Y.; Zhang, P.; Yao, B. Optical sorting of small chiral particles by tightly focused vector beams. Phys. Rev. A 2019, 99, 033825. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Rui, G.; Gong, L.; Gu, B.; Cui, Y. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Opt. Express 2016, 24, 24143–24152. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; Nieto-Vesperinas, M.; Sáenz, J.J. Nonconservative electric and magnetic optical forces on submicron dielectric particles. Phys. Rev. A 2011, 83, 033825. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Vesperinas, M.; Sáenz, J.; Gómez-Medina, R.; Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 2010, 18, 11428–11443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhtakia, A.; Varadan, V.K.; Varadan, V.V. Time-Harmonic Electromagnetic Fields in Chiral Media; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Canaguier-Durand, A.; Hutchison, J.A.; Genet, C.; Ebbesen, T.W. Mechanical separation of chiral dipoles by chiral light. New J. Phys. 2013, 15, 123037. [Google Scholar] [CrossRef]
- Alizadeh, M.; Reinhard, B.M. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators. ACS Photonics 2015, 2, 361–368. [Google Scholar] [CrossRef]
- Choi, J.S.; Cho, M. Limitations of a superchiral field. Phys. Rev. A 2012, 86, 063834. [Google Scholar] [CrossRef]
- Wang, S.; Chan, C.T. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014, 5, 3307. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Song, W.; Crozier, K.B. Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture. Acs Photonics 2018, 5, 2850–2859. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Liang, Y.; Zhang, P.; Yao, B. Transverse spinning of particles in highly focused vector vortex beams. Phys. Rev. A 2017, 95, 053802. [Google Scholar] [CrossRef]
- Paez-Lopez, R.; Ruiz, U.; Arrizon, V.; Ramos-Garcia, R. Optical manipulation using optimal annular vortices. Opt. Lett. 2016, 41, 4138–4141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, Z.; Cheng, Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials 2023, 13, 2251. https://doi.org/10.3390/nano13152251
Zhang Q, Liu Z, Cheng Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials. 2023; 13(15):2251. https://doi.org/10.3390/nano13152251
Chicago/Turabian StyleZhang, Qiang, Zhirong Liu, and Ziqiang Cheng. 2023. "Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles" Nanomaterials 13, no. 15: 2251. https://doi.org/10.3390/nano13152251
APA StyleZhang, Q., Liu, Z., & Cheng, Z. (2023). Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials, 13(15), 2251. https://doi.org/10.3390/nano13152251