Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams
Abstract
:1. Introduction
2. Theoretical Model
2.1. Calculation of Cylindrical Vector Beam with Arbitrary Polarization Distribution
2.2. Theory of Optical Force on a Rayleigh Particle
3. Results and Discussion
3.1. Electric and Magnetic Fields of High-Order Vector Beams
3.2. Optical Forces on Rayleigh Particle in Tight Focusing of CV Beams
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Cheng, W.; Haus, J.W.; Zhan, Q. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express 2009, 17, 17829–17836. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Chen, J.; Guo, C.; Ding, J.; Wang, H. A new type of vector fields with hybrid states of polarization. Opt. Express 2010, 18, 10786–10795. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Cheng, Z.; Wang, X.; Ding, J.; Wang, H. Polarization interferometric prism: A versatile tool for generation of vector fields, measurement of topological charges, and implementation of a spin–orbit controlled-Not gate. Appl. Phys. Lett. 2021, 118, 011105. [Google Scholar] [CrossRef]
- Wang, Q.; Tu, C.; Li, Y.; Wang, H. Polarization singularities: Progress, fundamental physics, and prospects. APL Photonics 2021, 6, 040901. [Google Scholar] [CrossRef]
- Zhu, L.; Cao, Y.; Chen, Q.; Ouyang, X.; Xu, Y.; Hu, Z.; Qiu, J.; Li, X. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron. Adv. 2021, 4, 210002. [Google Scholar] [CrossRef]
- Han, W.; Yang, Y.; Cheng, W.; Zhan, Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express 2013, 21, 20692–20706. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, J.; Ni, W.; Guo, C.; Wang, H. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett. 2007, 32, 3549–3551. [Google Scholar] [CrossRef] [PubMed]
- Rui, G.; Zhan, Q. Trapping of resonant metallic nanoparticles with engineered vectorial optical field. Nanophotonics 2014, 3, 351–361. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Li, Y.; Ding, J.; Guo, C.; Wang, H. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett. 2010, 105, 253602. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, R.; Wang, A. Focusing properties of cylindrical vector vortex beams. Opt. Commun. 2018, 414, 10–15. [Google Scholar] [CrossRef]
- Hnatovsky, C.; Shvedov, V.; Krolikowski, W.; Rode, A. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 2011, 106, 123901. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Yao, B.; Lei, M.; Yang, Y.; Min, J.; Dan, D. Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles. J. Opt. Soc. Am. A 2014, 31, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Gu, B.; Rui, G.; Cui, Y.; Zhu, Z.; Zhan, Q. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res. 2018, 6, 138–143. [Google Scholar] [CrossRef]
- Lehmuskero, A.; Johansson, P.; Rubinsztein-Dunlop, H.; Tong, L.; Kall, M. Laser trapping of colloidal metal nanoparticles. ACS Nano 2015, 9, 3453–3469. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Ding, W.; Nieto-Vesperinas, M.; Ding, X.; Rahman, M.; Zhang, T.; Lim, C.; Qiu, C.W. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci. Appl. 2017, 6, e17039. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ren, Z.; Kong, L.; Tu, C.; Li, Y.; Wang, H. Theoretical analysis based on mirror symmetry for tightly focused vector optical fields. Opt. Express 2020, 28, 23416–23432. [Google Scholar] [CrossRef] [PubMed]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Zhang, Y.; He, Y.; Min, C.; Yuan, X. Detecting cylindrical vector beams with an on-chip plasmonic spin-Hall metalens. Opt. Express 2022, 30, 10758–10769. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, C.; Wang, J.; Tang, M.; Li, X. Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam. Opt. Express 2021, 29, 39419–39427. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, Z.; Ye, H.; Wang, X.; Guo, Z.; He, Y.; Li, Y.; Yuan, X.; Fan, D. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci. Appl. 2021, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Bautista, G.; Huttunen, M.J.; Makitalo, J.; Kontio, J.M.; Simonen, J.; Kauranen, M. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. Nano Lett. 2012, 12, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q. Trapping metallic Rayleigh particles with radial polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, S.; Liang, Y.; Zhang, P.; Yao, B. Transverse spinning of particles in highly focused vector vortex beams. Phys. Rev. A 2017, 95, 053802. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Angelsky, O.V.; Hanson, S.G.; Zenkova, C.Y. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 2012, 86, 023847. [Google Scholar] [CrossRef]
- Angelsky, O.V.; Bekshaev, A.Y.; Maksimyak, P.P.; Maksimyak, A.P.; Mokhun, I.I.; Hanson, S.G.; Zenkova, C.Y.; Tyurin, A.V. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Opt. Express 2012, 20, 11351–11356. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, T.G.; Kuebler, S.M. Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates. Opt. Express 2006, 14, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Canales, V.F.; Oti, J.E.; Cagigal, M.P. Three-dimensional control of the focal light intensity distribution by analytically designed phase masks. Opt. Commun. 2005, 247, 11–18. [Google Scholar] [CrossRef]
- Rui, G.; Wang, X.; Gu, B.; Zhan, Q.; Cui, Y. Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field. Opt. Express 2016, 24, 7212–7223. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ng, J.; Lin, Z.; Chan, C.T. Optical pulling force. Nat. Photonics 2011, 5, 531–534. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. Ser. A 1959, 253, 358–379. [Google Scholar] [CrossRef]
- Hnatovsky, C.; Shvedov, V.G.; Shostka, N.; Rode, A.V.; Krolikowski, W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt. Lett. 2012, 37, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Youngworth, K.; Brown, T. Focusing of High Numerical Aperture Cylindrical-Vector Beams. Opt. Express 2000, 7, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.P. Radiation Forces and Momenta in Dielectric Media. Phys. Rev. A 1973, 8, 14–21. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M.; Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Phys. Rev. Res. 2021, 3, 043080. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Yao, B.; Liang, Y.; Han, G.; Zhang, P. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J. Opt. Soc. Am. A 2016, 33, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, S.; Yao, B.; Lei, M.; Yang, Y.; Min, J.; Dan, D. Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams. J. Opt. Soc. Am. B 2015, 32, 468–472. [Google Scholar] [CrossRef]
- Albaladejo, S.; Marques, M.I.; Laroche, M.; Saenz, J.J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 2009, 102, 113602. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.; Min, C.; Jin, Y.; Jiang, Y.; Liu, J.; Zhu, S.; Sheng, Y.; Zayats, A.V.; Yuan, X. Nonlinearity-Induced Multiplexed Optical Trapping and Manipulation with Femtosecond Vector Beams. Nano Lett. 2018, 18, 5538–5543. [Google Scholar] [CrossRef]
- Marago, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.M.; Bulanov, S.; Weber, S.; Korn, G. Analysis on the longitudinal field strength formed by tightly-focused radially-polarized femtosecond petawatt laser pulse. Opt. Express 2018, 26, 33091–33107. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Chen, Z.; Pu, J. Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2013, 30, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- du Preez-Wilkinson, N.; Stilgoe, A.B.; Alzaidi, T.; Rubinsztein-Dunlop, H.; Nieminen, T.A. Forces due to pulsed beams in optical tweezers: Linear effects. Opt. Express 2015, 23, 7190–7208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qiu, X.; Zeng, L.; Chen, L. Multiple trapping using a focused hybrid vector beam. Chin. Phys. B 2019, 28, 094202. [Google Scholar] [CrossRef]
- Liu, H.; Panmai, M.; Peng, Y.; Lan, S. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances. Opt. Express 2017, 25, 12357–12371. [Google Scholar] [CrossRef] [PubMed]
- Liberal, I.; Ederra, I.; Gonzalo, R.; Ziolkowski, R.W. Near-field electromagnetic trapping through curl-spin forces. Phys. Rev. A 2013, 87, 063807. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhou, L.; Jiang, X.; Zhu, L.; Shi, Q. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams. Nanomaterials 2024, 14, 691. https://doi.org/10.3390/nano14080691
Zhao Y, Zhou L, Jiang X, Zhu L, Shi Q. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams. Nanomaterials. 2024; 14(8):691. https://doi.org/10.3390/nano14080691
Chicago/Turabian StyleZhao, Yuting, Liqiang Zhou, Xiaotong Jiang, Linwei Zhu, and Qiang Shi. 2024. "Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams" Nanomaterials 14, no. 8: 691. https://doi.org/10.3390/nano14080691
APA StyleZhao, Y., Zhou, L., Jiang, X., Zhu, L., & Shi, Q. (2024). Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams. Nanomaterials, 14(8), 691. https://doi.org/10.3390/nano14080691