The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Deformation Mechanism under Shock Compression
3.1.1. Shock-Wave Evolution
3.1.2. Microstructural Evolution during Compression
3.1.3. He Bubble Evolution during Compression
3.2. Spallation Behavior
3.2.1. Spall Strength
3.2.2. Damage Evolution Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knapp, J.A.; Follstaedt, D.M.; Myers, S.M. Hardening by bubbles in He-implanted Ni. J. Appl. Phys. 2008, 103, 013518. [Google Scholar] [CrossRef]
- Cawthorne, C.; Fulton, E.J. Voids in irradiated stainless steel. Nature 1967, 216, 575. [Google Scholar] [CrossRef]
- Paschoud, F.; Gotthardt, R. Growth of bubbles during annealing of 600 MeV proton irradiated aluminum. J. Nucl. Mater. 1988, 155–157, 1146–1148. [Google Scholar] [CrossRef]
- Sandoval, L.; Perez, D.; Uberuaga, B.P.; Voter, A.F. Formation of helium-bubble networks in tungsten. Acta Mater. 2018, 159, 46–50. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Peng, L.; Huang, J.; Sun, H.; Li, J. Atomic-scale mechanisms of He/V ratio effect on helium bubble hardening in iron for neutron irradiated F/M steels. J. Nucl. Mater. 2020, 542, 152495. [Google Scholar] [CrossRef]
- Osetsky, Y.N.; Stoller, R.E. Atomic-scale mechanisms of helium bubble hardening in iron. J. Nucl. Mater. 2015, 465, 448. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, T.; Hwang, T.; Tsuchida, K.; Hattori, T.; Fukuda, M.; Nogami, S.; Hasegawa, A. Effects of helium on mechanical properties of tungsten for fusion applications. Nucl. Mater. Energ. 2018, 15, 154–157. [Google Scholar] [CrossRef]
- Demkowicz, M.J. A threshold density of helium bubbles induces a ductile-to-brittle transition at a grain boundary in nickel. J. Nucl. Mater. 2020, 533, 152118. [Google Scholar] [CrossRef]
- Kajita, S.; Yoshida, N.; Ohno, N.; Tsuji, Y. Growth of multifractal tungsten nanostructure by He bubble induced directional swelling. New J. Phys. 2015, 17, 043038. [Google Scholar] [CrossRef]
- Sojak, S.; Degmova, J.; Noga, P.; Krsjak, V.; Slugen, V.; Shen, T. Bubble Swelling in Ferritic/Martensitic Steels Exposed to Radiation Environment with High Production Rate of Helium. Materials 2021, 14, 2997. [Google Scholar] [CrossRef]
- Wang, X.-X.; Niu, L.-L.; Wang, S. Strong trapping and slow diffusion of helium in a tungsten grain boundary. J. Nucl. Mater. 2017, 487, 158–166. [Google Scholar] [CrossRef]
- Torres, E.; Pencer, J. Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel. J. Nucl. Mater. 2018, 502, 86–94. [Google Scholar] [CrossRef]
- El-Atwani, O.; Cunningham, W.S.; Perezc, D.; Martinez, E.; Trelewicz, J.R.; Li, M.; Maloy, S.A. Temperature threshold for preferential bubble formation on grain boundaries in tungsten under in-situ helium irradiation. Scr. Mater. 2020, 180, 6–10. [Google Scholar] [CrossRef]
- Glam, B.; Strauss, M.; Eliezer, S.; Moreno, D. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations. Int. J. Impact Eng. 2014, 65, 1–12. [Google Scholar] [CrossRef]
- Glam, B.; Eliezer, S.; Moreno, D.; Perelmutter, L.; Sudai, M.; Eliezer, D. Dynamic fracture and spall in aluminum with helium bubbles. Int. J. Fract. 2010, 163, 217–224. [Google Scholar] [CrossRef]
- Shao, J.-L.; Wang, P.; He, A.-M. Compression-induced stacking fault tetrahedra around He bubbles in Al. J. Appl. Phys. 2014, 116, 163516. [Google Scholar] [CrossRef]
- Wu, W.-D.; Shao, J.-L. Atomistic study on the dynamic response of the void or helium bubble in aluminum under compression and tension. J. Appl. Phys. 2020, 127, 154902. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, L.; E, J.C.; Ma, H.H.; Luo, S.N. Shock response of He bubbles in single crystal Cu. J. Appl. Phys. 2014, 116, 213506. [Google Scholar] [CrossRef]
- Flanagan, R.M.; Hahn, E.N.; Germann, T.C.; Meyers, M.A.; Fensin, S.J. Molecular dynamics simulations of ejecta formation in helium-implanted copper. Scr. Mater. 2020, 178, 114–118. [Google Scholar] [CrossRef]
- Zhou, T.-T.; He, A.-M.; Wang, P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum. J. Nucl. Mater. 2020, 542, 152496. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Xie, H.; Meng, W.; Zhang, X.; Zhang, J.; Zhao, W. Molecular dynamics simulation of nanocrack propagation mechanism of polycrystalline titanium under tension deformation in nanoscale. Mater. Today Commun. 2021, 26, 101837. [Google Scholar] [CrossRef]
- Xiang, M.; Cui, J.; Tian, X.; Chen, J. Molecular dynamics study of grain size and strain rate dependent tensile properties of nanocrystalline copper. J. Comput. Theoretic. Nanosci. 2013, 10, 1215–1221. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.W.; Liu, C.S.; An, T.; Yu, H.P.; Qin, F. Temperature and grain size dependences of mechanical properties of nanocrystalline copper by molecular dynamics simulation. Model. Simul. Mater. Sci. Eng. 2019, 27, 065012. [Google Scholar] [CrossRef]
- Gludovatz, B.; Wurster, S.; Hoffmann, A.; Pippan, R. Fracture toughness of polycrystalline tungsten alloys. Int. J. Refract. Met. Hard Mater. 2010, 28, 674–678. [Google Scholar] [CrossRef]
- Luan, D.L.; Wang, Y.B.; Li, M.C.; Chen, J. The grain boundary effect on shock induced spallation of polycrystalline uranium. Int. J. Mech. Sci. 2022, 228, 107491. [Google Scholar] [CrossRef]
- Chen, J.W.; Liang, S.; Zhu, Y.X.; Zhao, L.; Huang, M.S.; Li, Z.H. Studying crack propagation along symmetric tilt grain boundary with H segregation in Ni by MD simulation. Comp. Mater. Sci. 2022, 212, 111569. [Google Scholar] [CrossRef]
- Zhang, L.; Shibuta, Y.; Huang, X.; Lu, C.; Liu, M. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comp. Mater. Sci. 2019, 156, 421–433. [Google Scholar]
- Fensin, S.J.; Escobedo-Diaz, J.P.; Brandl, C.; Cerreta, E.K.; Gray III, G.T.; Germann, T.C.; Valone, S.M. Effect of loading direction on grain boundary failure under shock loading. Acta Mater. 2014, 64, 113–122. [Google Scholar]
- Zhu, Q.; Shao, J.-L.; Wang, P. The dynamic response of He bubble in bicrystal copper under uniaxial compression and tension. J. Nucl. Mater. 2023, 574, 154200. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mishin, Y.; Mehl, M.J.; Papaconstantopoulos, D.A.; Voter, A.F.; Kress, J.D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 2001, 63, 224106. [Google Scholar]
- Wang, L.; Ning, X.J. Molecular dynamics simulations of helium behaviour in copper crystals. Chin. Phys. Lett. 2003, 20, 1416–1419. [Google Scholar]
- Nieminen, R. Molecular Dynamics Simulations of Rare Gases in Metals: Interactions, Fundamental Aspects of Inert Gases in Solids; Springer: Berlin/Heidelberg, Germany, 1991; pp. 17–25. [Google Scholar]
- Zhu, Q.; Shao, J.-L.; Pan, H.; Wang, P. Collapse of stacking fault tetrahedron and dislocation evolution in copper under shock compression. J. Nucl. Mater. 2021, 554, 153081. [Google Scholar] [CrossRef]
- Luo, S.N.; Germann, T.C.; Tonks, D.L.; An, Q. Shock wave loading and spallation of copper bicrystals with asymmetric Σ3<110> tilt grain boundaries. J. Appl. Phys. 2010, 108, 093526. [Google Scholar]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Millett, P.C.; Tonks, M.; Zhang, L.Z.; Biner, B. Molecular dynamics simulations of He bubble nucleation at grain boundaries. J. Phys. Condens. Matter 2012, 24, 305005. [Google Scholar]
- El-Atwani, O.; Hinks, J.A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J.P. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 2014, 4, 4716. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.N.; Leffers, T.; Green, W.V.; Victoria, M. Nucleation of helium bubbles on dislocations, dislocation networks and dislocations in grain boundaries during 600 MeV proton irradiation of aluminium. J. Nucl. Mater. 1984, 125, 287–297. [Google Scholar] [CrossRef]
- Shi, J.Y.; Li, L.L.; Peng, L.; Gao, F.; Huang, J.J. Atomistic study on helium-to-vacancy ratio of neutron irradiation induced helium bubbles during nucleation and growth in α-Fe. Nucl. Mater. Energy 2021, 26, 100940. [Google Scholar] [CrossRef]
- Zhu, Q.; Shao, J.-L.; Wang, P. The Interaction between He Bubble and Migrating Grain Boundary Induced by Shear Loading. Metals 2022, 12, 2012. [Google Scholar] [CrossRef]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Thompson, A.P.; Plimpton, S.J.; Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 2009, 131, 154107. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.-L.; Wu, W.-D. Shock-induced collapse and migration of nanoscale He bubble in single crystal Al. Scr. Mater. 2023, 222, 115033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Shao, J.; Wang, P. The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations. Nanomaterials 2023, 13, 2308. https://doi.org/10.3390/nano13162308
Zhu Q, Shao J, Wang P. The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations. Nanomaterials. 2023; 13(16):2308. https://doi.org/10.3390/nano13162308
Chicago/Turabian StyleZhu, Qi, Jianli Shao, and Pei Wang. 2023. "The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations" Nanomaterials 13, no. 16: 2308. https://doi.org/10.3390/nano13162308
APA StyleZhu, Q., Shao, J., & Wang, P. (2023). The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations. Nanomaterials, 13(16), 2308. https://doi.org/10.3390/nano13162308