Hybrid Silicon Nitride Photonic Integrated Circuits Covered by Single-Walled Carbon Nanotube Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method for Measuring the Optical and Thermo-Optical Characteristics
2.2. Method for Measuring the Nonlinear Characteristics
2.3. Method for Measuring the Bolometric Photoresponse
2.4. Fabrication Steps
3. Results
3.1. Fabricated Devices
3.2. Optical Properties of SWCNT Films on a Waveguide
3.3. Electrical Properties of SWCNT Film on a Waveguide
3.4. Nonlinear Optical Properties of SWCNT Film on a Waveguide
3.5. Thermo-Optical Properties of SWCNT Film on a Waveguide
3.6. Photoresponse of SWCNT Film on a Waveguide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | Atomic force microscope |
CMOS | Complementary metal oxide semiconductor |
DFWM | Degenerated four-wave mixing |
EDFA | Erbium-doped fiber amplifier |
FGC | Focusing grating coupler |
FWM | Four-wave mixing |
LPCVD | Low-pressure chemical vapor deposition |
MIPT | Moscow Institute of Physics and Technology |
NEP | Noise equivalent power |
PIC | Photonic integrated circuit |
SWCNT | Single-walled carbon nanotube |
VNA | Vector network analyzer |
References
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Wu, J.; Ma, H.; Yin, P.; Ge, Y.; Zhang, Y.; Lil, L.; Zhang, H.; Lin, H. Two-dimensional materials for integrated photonics: Recent advances and future challenges. Small Sci. 2021, 1, 2000053. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Phare, C.; Lee, Y.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled Generation of a p–n Junction in a Waveguide Integrated Graphene Photodetector. Nano Lett. 2016, 16, 7107–7112. [Google Scholar] [CrossRef] [Green Version]
- Youngblood, N.; Chen, C.; Koester, S.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Bie, Y.; Grosso, G.; Heuck, M.; Furchi, M.; Cao, Y.; Zheng, J.; Bunandar, D.; Navarro-Moratalla, E. MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M.; et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 2016, 10, 727–732. [Google Scholar] [CrossRef]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.H.; et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 98–517. [Google Scholar] [CrossRef]
- Itkis, M.; Borondics, F.; Yu, A.; Haddon, R. Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films. Science 2006, 312, 5772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics 2019, 4, 034301. [Google Scholar] [CrossRef]
- Davletkhanov, A.I.; Mkrtchyan, A.A.; Chermoshentsev, D.A.; Shashkov, M.V.; Ilatovskii, D.A.; Krasnikov, D.V.; Nasibulin, A.G.; Gladush, Y.G. Inverted loss engineering in functional material covered waveguides. arXiv 2023, arXiv:2303.14512. [Google Scholar]
- Khabushev, E.M.; Krasnikov, D.V.; Zaremba, O.T.; Tsapenko, A.P.; Goldt, A.E.; Nasibulin, A.G. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 2019, 10, 6962–6966. [Google Scholar] [CrossRef]
- Kaskela, A.; Nasibulin, A.G.; Timmermans, M.Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D.P.; Zakhidov, A.; et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349–4355. [Google Scholar] [CrossRef]
- Kuzin, A.; Kovalyuk, V.; Golikov, A.; Prokhodtsov, A.; Marakhin, A.; Ferrari, S.; Pernice, W.; Gippius, N.; Goltsman, G. Efficiency of focusing grating couplers versus taper length and angle. In Proceedings of the 6th International School and Conference “Saint Petersburg OPEN 2019”: Optoelectronics, Photonics, Engineering and Nanostructures, Saint Petersburg, Russia, 22–25 April 2019; Volume 1410, p. 012181. [Google Scholar] [CrossRef]
- Komrakova, S.; Kovalyuk, V.; An, P.; Golikov, A.; Rybin, M.; Obraztsova, E.; Goltsman, G. Effective absorption coefficient of a graphene atop of silicon nitride nanophotonic circuit. J. Phys. Conf. Ser. 2020, 1695, 012135. [Google Scholar] [CrossRef]
- Gubarev, V.; Yakovlev, V.; Sertsu, M.; Yakushev, O.; Krivtsun, V.; Gladush, Y.G.; Ostanin, I.; Sokolov, A.; Schäfers, F.; Medvedev, V.; et al. Single-walled carbon nanotube membranes for optical applications in the extreme ultraviolet range. Carbon 2019, 155, 734–739. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Tsapenko, A.P.; Volkov, V.S.; Anisimov, A.S.; Gladush, Y.G.; Nasibulin, A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 2020, 116, 231103. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Zadeh, I.E.; Jöns, K.D.; Zwiller, V. Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Chow, K.; Yamashita, S. Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide. Opt. Lett. 2010, 35, 2070–2072. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.; Savostianova, N.S.; Mikhalov, B.K.; Thourhout, D. Electrically tunable optical nonlinearities in graphene covereds in waveguides characterized by four-wave mixing. ACS Photonics 2017, 4, 3039–3044. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, N. Perspectives on nonlinear optics of graphene: Opportunities and challenges. APL Photonics 2022, 7, 020901. [Google Scholar] [CrossRef]
- Kurtukova, T.N.; Kopylova, D.S.; Raginov, N.I.; Khabushev, E.M.; Novikov, I.V.; Serebrennikova, S.I.; Krasnikov, D.V.; Nasibulin, A.G. Plasma-treated carbon nanotubes for fast infrared bolometers. Appl. Phys. Lett. 2023, 122, 093501. [Google Scholar] [CrossRef]
Film Thickness, nm | , Ohm·m | , dB/m | , Wm | , cmHzW |
---|---|---|---|---|
2 ± 1 | 10 | 0.0570.002 | 9800 ± 2400 | - |
8 ± 4 | 20 × 10 | 0.2570.005 | - | |
22 ± 4 | 7.6 × 10 | 0.5340.026 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komrakova, S.; An, P.; Kovalyuk, V.; Golikov, A.; Gladush, Y.; Mkrtchyan, A.; Chermoshentsev, D.; Krasnikov, D.; Nasibulin, A.; Goltsman, G. Hybrid Silicon Nitride Photonic Integrated Circuits Covered by Single-Walled Carbon Nanotube Films. Nanomaterials 2023, 13, 2307. https://doi.org/10.3390/nano13162307
Komrakova S, An P, Kovalyuk V, Golikov A, Gladush Y, Mkrtchyan A, Chermoshentsev D, Krasnikov D, Nasibulin A, Goltsman G. Hybrid Silicon Nitride Photonic Integrated Circuits Covered by Single-Walled Carbon Nanotube Films. Nanomaterials. 2023; 13(16):2307. https://doi.org/10.3390/nano13162307
Chicago/Turabian StyleKomrakova, Sophia, Pavel An, Vadim Kovalyuk, Alexander Golikov, Yury Gladush, Aram Mkrtchyan, Dmitry Chermoshentsev, Dmitry Krasnikov, Albert Nasibulin, and Gregory Goltsman. 2023. "Hybrid Silicon Nitride Photonic Integrated Circuits Covered by Single-Walled Carbon Nanotube Films" Nanomaterials 13, no. 16: 2307. https://doi.org/10.3390/nano13162307
APA StyleKomrakova, S., An, P., Kovalyuk, V., Golikov, A., Gladush, Y., Mkrtchyan, A., Chermoshentsev, D., Krasnikov, D., Nasibulin, A., & Goltsman, G. (2023). Hybrid Silicon Nitride Photonic Integrated Circuits Covered by Single-Walled Carbon Nanotube Films. Nanomaterials, 13(16), 2307. https://doi.org/10.3390/nano13162307